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Abstract

This paper deals with analysis of temporal velocity signals in bubble-driven liquid flows. The analysis are based on direct
numerical simulations of mono-disperse bubbly flows in a confined vertical channel. Time histories of the liquid phase
vertical velocity are used to evaluate autocorrelation functions and one-dimensional energy spectra at various spatial positions.
Different methods proposed in literature for bridging over the gaps in the liquid velocity signal due to bubble passage are
investigated. It has been found that the different methods have a significant influence on the energy of the spectrum, but also
may result in a shift of the most energetic frequency.

1 Introduction

Despite the great technical importance of bubbly flows e.g.
in nuclear and chemical engineering, several fundamental
physical aspects are still not well understood. Examples
are the generation of pseudo-turbulence by bubbles rising
through otherwise stagnant liquid as it occurs e.g. in bubble
columns and the interaction of bubbles with shear induced
turbulence. A suitable measure to quantify bubble-induced
pseudo turbulence or the modulation of shear induced
turbulence by the presence of bubbles is the one dimensional
power spectrum of the velocity fluctuations in the liquid
phase.

One-dimensional spectra for bubbly air-water flow in grid
generated turbulence were measured by Lance & Bataille
(1991), who evaluated the spectra from velocity signals
obtained by hot wire anemometry (HWA). They find that
the classical -5/3 power law is progressively replaced by
a -8/3 dependence at high frequencies and attribute this
effect to the wakes of the bubbles. However, in recent HWA
measurements of Rensenet al. (2005) this trend could not
be confirmed. Rensenet al. (2005) find a more pronounced
energy enhancement on small scales than on large scales
owing to the presence of bubbles. This leads to a less
steep slope in the spectrum as compared to the Kolmogorov
-5/3 law. Rensenet al. (2005) attribute this discrepancy
to different values of the bubblance parameter, which is
defined as the ratio of the pseudo-turbulent contribution to
the turbulence kinetic energy to that of the turbulence kinetic
energy in the absence of bubbles. However, it appears that
the bubblance parameter alone cannot explain the different
spectral slopes observed in various experiments and there

must be further parameters of influence.

Unfortunately, the evaluation of liquid phase turbulence
spectra from experimental signals is associated with certain
difficulties. In bubbly flows, the character of the hot wire
signal is discontinuous due to the passage of bubbles. It is,
therefore, necessary to adopt a specific signal processing
in order to achieve a correct measurement of the liquid
phase velocity. For velocity signals obtained by Laser
Doppler Anemometry (LDA) the evaluation of turbulence
power spectra is even more complicated (see Harteveldet
al. (2005)). Due to the random distribution of the seeding
particles, the signal is randomly sampled so that the standard
Discrete Fourier Transform cannot be applied. A second
complication especially at high void fraction and far from
walls is that one of the two laser beams may be blocked so
that no LDA measurement volume is created resulting in
large gaps in the sampled data. Third, when the paths of the
two laser beams are not blocked and a valid measurement
volume is formed a bubble may cross the measurement
volume itself resulting in difficulties to interpret the signal
since at that moment - similar to HWA signals - the liquid
velocity is not defined.

There exist several approaches how to bridge over the gap
in the liquid velocity signal due to passage of a bubble. Tsuji
& Morikawa (1982) replaced the defective parts of the signal
by straight lines obtained by linear interpolation between the
liquid signal parts. Gherson & Lykoudis (1984) suppressed
the parts of the signal indicating the presence of the gas
phase completely and patched together the successive liquid
velocity records. Lance & Bataille (1991) replaced the
characteristic function of the liquid phase by a sequence
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of smoothing windows. Also Wanget al. (1990) replaced
the gaps in the signal with the values of the mean liquid
velocity. Panidis & Papailiou (2000) introduced an indirect
analytic continuity which essentially presumes that the void
fraction parts of the signal are filled with segments having
the same statistical properties as those of the continuous
phase velocity signal. Similar to Tsuji & Morikawa (1982),
Rensenet al. (2005) and Lutheret al. (2005) used a linear
interpolation of the gaps when a bubble passes the hot wire
sensor and estimated the power spectral density from a
Fourier transform. They state that this approach to obtain
the spectrum has to be used with caution, as it results in a
frequency dependent bias. Instead, they show that for void
fractions up to 2% autoregressive modelling can be used
for estimation of the power spectral density and note that
this method shows a negligible frequency dependent bias.
Shawkatet al. (2007) investigated five different methods to
replace the subsequent gaps in the signals and decided to use
the linear interpolation technique.

In this paper temporal velocity "signals" from direct
numerical simulations are used to investigate effects of
different ways for bridging the gaps in velocity signals
on the turbulence energy spectrum of the liquid phase. In
particular, the methods of Gherson & Lykoudis (1984),
Tsuji & Morikawa (1982), Wanget al. (1990) and Panidis
& Papailiou (2000) are applied to DNS velocity data for
the bubble driven liquid flow in a plane vertical channel.
Therefore, in the investigated cases in the absence of bubbles
there will not be any turbulent motion and as a consequence
the bubblance parameter is infinite. Measurements of power
spectra for the flow in bubble columns have been performed
by Muddeet al. (1997), Ciu & Fan (2004)and Ciu & Fan
(2005). In both cases the authors find a spectral slope of
-5/3. However, in these experiments there exists a large scale
liquid recirculation which is not present in the small scale
computational domain with periodic boundary conditions
considered in our numerical simulations.

In the remainder of the paper we first give a short descrip-
tion of our in-house computer code that is used to perform
the direct numerical simulations of bubbly flows based on
the volume-of-fluid method. Next we present the physical
and numerical parameters of the simulations and discuss
results for important mean and statistical quantities. In the
main part of the paper we show characteristic time signals
of the flow from which we compute the respective auto
correlation function and power spectra using four different
methods for replacing the gaps due to bubble passage.

2 Computation of bubble driven liquid flows by
direct numerical simulations of bubble-array
flows with computer code TURBIT-VoF

This section describes how the instantaneous data needed
for the analysis of velocity fluctuations in bubble driven liq-
uid flows have been obtained by direct numerical simula-
tions of so-called bubble-array flows with the computer code

TURBIT-VoF.

2.1 Mathematical formulation of gas-liquid flows in
computer code TURBIT-VoF - an outline

TURBIT-VoF is an in-house computer code developed at the
Institute for Reactor Safety in the Research Centre Karlsruhe
for direct numerical simulations of dilute bubbly flows in
plane channels. For the sake of consistency the mathematical
formulation of gas-liquid flows applied in TURBIT-VoF is
in the following briefly outlined. A detailed description of
the code is given by Sabischet al. (2001).

Using the local liquid volumetric fractionf to define mix-
ture material properties such as density and viscosity:

ρ∗ = fρ∗l + (1− f)ρ∗g and µ∗ = fµ∗l + (1− f)µ∗g

and mixture flow properties such as centre-of-mass velocity
and pressure:

u∗ =
fρ∗l u

∗
l + (1− f)ρ∗gu

∗
g

fρ∗l + (1− f)ρ∗g
and p∗ = fp∗l + (1− f)p∗g

the behaviour of both phases, the liquid and the gas, as well
as the dynamic boundary condition at the phase interface is
in TURBIT-VoF described by the following single set of gov-
erning equations that express conservation of mass and mo-
mentum within the entire computational domain:

mass:
∇ · u = 0 (1)

momentum:

∂ρu
∂t

+∇ · (ρuu) = −∇p +
1

Reref
∇ · µ(∇u +∇uT) (2)

− (1− f − 〈αg〉)Eöref

Weref

g∗

|g∗|
+

κai

Weref
n.

where the following scaling applies:

ρ =
ρ∗

ρref
µ =

µ∗

µref
x =

x∗

lref
u =

u∗

uref
t =

t∗uref

lref

with the material properties of the liquid phase taken to be
reference ones (ρref = ρ∗l andµref = µ∗l ) and the reference
length,lref, and reference velocity,uref, to be specified. Note
that dimensional quantities are denoted with the superscript
∗.

The reference Reynolds, Weber and Eötvos number are,
respectively, given by:

Reref =
ρ∗l ureflref

µref
Weref =

ρ∗l u
2
reflref

σ∗
Eöref =

(ρ∗l -ρ∗g)|g∗|l2ref

σ∗

whereσ∗ stands for the surface tension andg∗ represents
the gravity, while subscriptsl andg denote the liquid and the
gas phase, respectively.

In order to prevent uniform downward acceleration of the
whole system and to ensure by the same time a downward
liquid flow in the vicinity of channel walls, an additional
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body force,〈ρ∗〉g∗/|g∗|, is imposed to both fluids, where
〈ρ∗〉 = ρ∗l + 〈αg〉(ρ∗g − ρ∗l ) represents the overall density
of two-phase mixture. In relation to this, the dimensionless
pressure is defined as:

p = (p∗ − ρ∗l g · x∗)/(ρ∗l u
2
ref)

while the buoyancy term in the momentum equation involves
the overall gas volumetric fraction〈αg〉.

The last term in the equation (2) expresses the contribu-
tion of the surface tension force whereκ stands for twice the
mean dimensionless interface curvature,n represents the unit
normal vector at the phase interface pointing from the gas to
the liquid phase and

ai = lrefa
∗
i

represents dimensionless interfacial area concentration.

Employing the transport equation for the liquid volumetric
fraction:

∂f

∂t
+ u · ∇f = 0, (3)

flow regions containing pure liquid (f=1) are distinguished
from the pure gas ones (f=0). When0 < f < 1, an interface
exists within the computational cell. In such cells the model
of a homogeneous two-phase mixture is applied, where the
equality of phase velocities and pressures is assumed.

Equations 1 and 2 are numerically integrated by a projec-
tion method where the resulting Poisson equation is solved
by a conjugate gradient method. The time integration of the
momentum equation is performed by an explicit third-order
Runge-Kutta scheme. All spatial derivatives are approx-
imated by second order central difference schemes. For
solving the equation 3 a Volume-of-Fluid (VoF) procedure is
applied. The interface orientation and location inside each
mesh cell is reconstructed using PLIC (P iecewiseLinear
InterfaceCalculation) method EPIRA which locally ap-
proximates the phase interface by a plane. The methodology
is verified comparing numerical results with experimental
data for the rise of an ellipsoidal bubble and an oblate
ellipsoidal cap bubble (see Sabischet al. (2001)).

2.2 Computational set-up for TURBIT-VoF
simulations of bubble-array driven flows

The simulated flow pattern is namedbubble-array flow.
The term ’bubble-array flow’ refers to a flow regime where
monodisperse arrays of bubbles rise through otherwise
stagnant liquid within a plane infinite channel. Such a flow
pattern is in TURBIT-VoF represented by a fixed doubly
periodic computational domain confined with two rigid
walls (see Figure 1). The whole bubble-array flow can be
imagined as a flow configuration where the bubble-array
pattern presented in Figure 1 is periodically repeated in the
vertical x1 and span-wisex2 direction. In relation to this,
bubble-array flows simulated by TURBIT-VoF resemble in
practice encountered developed gas-liquid flows within a flat

bubble column with a moderate ratio of the bubble diameter
to the column depth.

Two types of bubble-array flows are simulated: (i)
bubble-train flowwhere only one bubble is suspended within
the computational domain and (ii)bubble-swarm flowwhere
the periodic cell contains a swarm of eight freely interacting
bubbles. Although the developed flow regime in a flat bubble
column is more realistically described by the concept of
bubble-swarm than by the pattern of bubble-train flow, the
latter simulation is performed to analyze effects of bubble
population density on the liquid velocity fluctuations. The
definition of the bubble-train configuration, namely, implies
that all the bubbles within the whole channel are of an
identical shape, move with the same velocity and are at
constant distances from their neighbours. On the other side,
the rise of an individual bubble in bubble-swarm flow is
through the mutual interactions of bubble wakes influenced
by the motion of other bubbles. Therefore, despite the same
equivalent diameter, the bubbles within the bubble-swarm
flow are, in principle, not of an identical shape and do not
rise with the same velocity.

The computational domain for both simulations is spec-
ified to be a plane channel of the dimensionless sizel1 =
l2 = l3 = l = 1. The domain is discretized with643 uni-
form mesh cells for the simulation of the bubble-train flow.
However, a numerical grid with the resolution of1003 turned
out to be necessary in order to resolve the smallest eddies in
the case of bubble-swarm flow. The equivalent bubble diam-
eter,db, in both simulations is prescribed to be one fourth of
the computational domain size. In relation to the aforemen-
tioned, the magnitude of overall gas volumetric fraction:

〈αg〉 =
nbd

3
bπ

6l3
, (4)

for the two simulated bubble-array flows differs only because
of different number od bubbles contained within the compu-
tational domainnb and not because of different geometrical
parameters of the two flow configurations. Therefore, while
in the case of bubble-train flow a very dilute bubbly flow
with 〈αg〉 = 0.818% is considered, with〈αg〉 = 6.544%
the lower limit of a moderate bubbly flow is achieved in the
bubble-swarm simulation.

Effects of physical parameters on the rise of gas bubbles
are taken into account specifying the magnitude of bubble
Eötvös number:

Eöb = |g∗|d∗2b

(ρ∗l − ρ∗g)
σ∗

= 3.065 (5)

and the magnitude of Morton number:

M = |g∗|µ∗4l

ρ∗l − ρ∗g
ρ∗2l σ∗3

= 3.06 · 10−6. (6)

These values of Eötvös and Morton number are obtained
adopting the following ratios of phase densities and phase
viscosities:

Γρ =
ρ∗g
ρ∗l

= 0.5 and Γµ =
µ∗g
µ∗l

= 1. (7)
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Figure 1: Computational domain for direct numerical simu-
lations of bubble driven flows with TURBIT-VoF

The magnitude of the density ratioΓρ may appear unusual
and deserves some comments. The choice of this parameter
was motivated by the results reported by Wörner (2003),
who using TURBIT-VoF investigated the influence of the
density ratio on the rise of a single ellipsoidal bubble with
parameters Eöb = 3.065, M = 3.06 · 10−6 andΓµ = 1.
Comparing results of numerical simulations forΓρ =0.5,
0.2, 0.1 and 0.02 he found that the phase density ratio,Γρ,
has a notable influence on the initial acceleration of the
bubble, but does not affect the bubble shape and bubble
Reynolds number when the bubble terminal velocity has
been reached. Moreover, the liquid velocity scaled by the
bubble rise velocity turned out to be virtually independent
onΓρ in the steady flow regime.

The bubble-train flow is computed starting from an initial
situation where one spherical bubble is positioned in the
centre of the channel filled with stagnant liquid. Using
time step width of∆t = 10−4 in total 60 000 time steps
are computed. In the simulation of the bubble-swarm flow
8 spherical bubbles are placed inside the quiescent liquid
and arranged by slight perturbations of a regular pattern
in each coordinate direction as it is presented in Figure
1. Due to higher bubble-induced agitation of the liquid
flow the magnitude of time step width of∆t = 0.5 · 10−4

has been necessary. In total 120 000 time steps are computed.

For an easy reference the computational set-up of the per-
formed simulations is presented in Table 1.

3 Analysis of computed three-dimensional motion
of bubble-arrays

Our intuition suggests that the bubble-induced velocity
fluctuations of the liquid phase are strongly related to the
the dynamics of bubbles. This is, particulary, expected
in bubble-swarm flows where, owing to the proximity of

Table 1: Computational set-up specified in DNS of bubble-
array flows with code TURBIT-VoF

type of bubble-array flow bubble-train bubble-swarm

reference length 4m 4m
reference velocity 1m/s 1m/s
computational domain sizea 1x1x1 1x1x1
number of grid points 643 1003

width of grid cell 0.015625 0.01
bubble equivalent diametera 0.25 0.25
number of bubbles 1 8
overall gas volume fraction 0.818% 6.544%
phase density ratio 0.5 0.5
phase viscosity ratio 1 1
Morton number 3.06 · 10−6 3.06 · 10−6

bubble Eötvös number 3.065 3.065
reference Eötvös number 49.05 49.05
reference Weber number 2.5 2.5
reference Reynolds number 100 100
initial conditions stagnant stagnant
time step widtha 10−4 0.5 · 10−4

number of time steps 0.6 · 104 1.2 · 104

computed timea 6 6
a dimensionless

other bubbles, the motion of an individual bubble is more
complex. In this context, this section presents a detailed
analysis of three-dimensional bubble-array evolution for the
simulated cases.

An overall impression on bubble-array dynamics as
well as characteristics of bubble shape and orientation
are obtained through flow visualisation by use of AVS
software. A detailed analysis of individual bubble motion is
performed by evaluation of bubble trajectories and bubble
rise velocities.

The position of centre-of-mass of themth bubble1 at time
instantt is evaluated by:

rm
b =

∫
V m

b
rInd(r)dV∫

V m
b

Ind(r)dV
, (8)

whereV m
b represents volume of themth bubble anddV is

the volume of mesh cell. In order to avoid an interference of
individual bubbles within the bubble-swarm, cells belonging
to a certain bubble are marked introducing a bubble indicator
function, Ind(r). This function is defined to have a zero
value if the considered cell is fully occupied with the liquid
phase and a constant valuem if the cell is a part of the
bubble with the ordinal numberm.

1The notation used in the presentation of the applied methodology con-
cerns more general case of the bubble-swarm flow where an individual
bubble within the considered swarm of bubbles is associated with its or-
dinal numberm (m = 1, nb). To apply corresponding formulae on the
case of the bubble-train flow one should simply putm = 1.
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The velocity of the bubble centroid is evaluated either by:

um
b =

∫
V m

b
uInd(r)dV∫

V m
b

Ind(r)dV
, (9)

whereu represents the velocity computed by TURBIT-VoF,
or differentiating the bubble path:

um
b =

drm
b

dt
. (10)

It has been verified numerically that these two formulae give
identical results. The former is used for the initial time step
(t = 0), while the latter is applied when positions of the
bubble centroid are known for two subsequent time steps
(t > 0). The rise velocity of the swarm is computed as the
arithmetic mean of the individual bubble rise velocities.

Bubble shape and liquid phase velocities at chosen span-
wise position are for both bubble-array flows visualized in
Figure 2. In the case of bubble-train flow an axisymmetric
ellipsoidal bubble shape can be observed with the major
axis parallel to the horizontal plane and with the axis aspect
ratio κ = 1.555. In the bubble-swarm flow bubbles also
took an ellipsoidal shape, but with major axis not perfectly
aligned with the horizontal plane and with some slight
differences in the shape of individual bubbles. Considering
these differences as negligible, an average ellipsoid axis
aspect ratio ofκ = 1.526 can be estimated, what is≈ 2%
lower value than in the case of bubble-train flow. The
differences in the bubble shape between the two simulated
bubble-array flows may, therefore, be neglected. However,
when agitation of the liquid phase by rising bubbles is
put into consideration, striking differences between the
bubble-train and bubble-swarm flow can be observed. While
in the bubble-train flow, namely, an intensive upward motion
of the liquid phase is, through the bubble rise, induced only
in the central part of the channel, perturbations of the liquid
phase generated through the bubble-induced displacement of
the liquid as well as through the mutual interaction of bubble
wakes are in the case of bubble-swarm flow evident in the
whole channel.

The trajectory of the bubble-train may be considered as an
approximatively straight path taking into account that during
the whole simulation time an individual bubble within the
array vertically rose a distance of≈ 19l with the maximal
lateral deviation of its trajectory of less than0.05l. There-
fore, it can be concluded that the chosen flow configuration
ensures that neither laterally neighbouring bubble-arrays nor
channel walls influence the shape of the bubble-train rising
path. On the other side, Figure 3 shows that in bubble-swarm
flow significant movements of individual bubbles occur in
both, wall-normal and span-wise, directions. These lateral
movements of bubbles in the bubble-swarm scenario lead
to the formation of two bubble populations approximatively
aligned with channel walls. It has also been observed that
the tendency to horizontal alignment of bubbles, known as
bubble rafting, is suppressed by repelling effects of bubble
wakes that occur after a certain bubble approached the other

one beyond a critical distance.

(a) bubble-train att = 5.5 with liquid flow atx2 = 0.5

(b) bubble-swarm att = 5.5 with liquid flow atx2 = 0.25

Figure 2: Visualization of computed bubble-array flows

Further information about the rise of bubble-arrays with
different number of bubbles can be drawn from Figure 4,
where the time evolution of the rise velocities for the entire
bubble-arrays as well as of the individual bubbles within
the bubble-swarm is presented. It is evident that, except for
a short initial phase of simulation, the acceleration of the
bubble-train is stronger than the one of the bubble-swarm.
Such a behaviour is caused by the larger drag due to
increased vorticity deposition in the case of thicker bubble
population. Even though the individual bubble motion
shows the transient behaviour owing to mutual bubble wake
interactions, the whole swarm of bubbles reaches a well
defined steady state quite quickly. The magnitudes of the
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rise velocities estimated for the steady-state regime for the
bubble-train, bubble-swarm and individual bubbles within
the bubble swarms are presented in Table 2.

Figure 3: Lateral movements of individual bubbles computed
in bubble-swarm flow scenario. Symbols represent
initial bubble positions.

Figure 4: Time evolution of the rise velocity of individual
bubbles in bubble-swarm flow scenario (bubble no-
tation is compatible with Figure 3). Mean veloci-
ties of the bubble-train and the bubble-swarm as the
whole are presented in subfigure.

Table 2: List of main parameters describing three-
dimensional motion of computed bubble-arrays

type of bubble-array bubble-train bubble-swarm

rise lengtha c 19.10 13.31
lateral bubble motionc negligible strong
mean bubble rise velocitya b 3.586 2.218
mean bubble Reynolds numberb 89.65 55.45
bubble axis aspect ratiob 1.555 1.535
a dimensionless
b in steady state
c during the whole simulation period

4 Analysis of time signals computed by direct
numerical simulations of bubble-array flows

A storage of DNS data for each computed time instant and
over the whole computational domain requires a huge mem-
ory space. For that reason the complete data sets are stored
only for certain time intervals (typically every250th time
step). A record of instantaneous velocity components and
local liquid volumetric fraction necessary for an analysis of
time signals are sampled at every time step of integration
only for specified coordinate positions. In here presented
simulations of bubble-array flows temporal records of instan-
taneous quantities (hereafter called time signals) are stored
for one wall-normal bar of cells (x1 = 0.5, x2 = 0.5 and
x3 = 0 − 1) in the case of bubble-train flow and for one
bar of cells parallel to the wall (x1 = 0.5, x2 = 0 − 1 and
x3 = 0.25) in the case of bubble-swarm flow. In Figure 5 and
Figure 6 examples of computed time signals are presented for
bubble-train and bubble-swarm flow, respectively.

Figure 5: Time signals computed by DNS of bubble-train
flow.
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h

Figure 6: Time signals at different positions computed by
DNS of bubble-swarm flow.

DNSs give time signals for the velocity of the two-phase
mixture. In order to extract time steps in which the consid-
ered mesh cell is filled with pure liquid, the indicator function
of the liquid phase is defined as:

φl(t) = 1 if f(t) = 1 (11)

= 0 otherwise,

wheref(t) is the local liquid volumetric fraction computed
by TURBIT-VoF simulations in considered mesh cell at the
time instantt. The averaging of phase indicator function
gives mean liquid volumetric fraction:

αl =
1

te − ts

te∑
ts

φl(t)∆t, (12)

where ts and te are the lower and the upper limit of the
averaging interval.

Eliminating all but the data for the liquid phase, the gaps in
time velocity signals are produced. In relation to this, liquid
velocity is not a field quantity as it is not defined at all time
domains under consideration. Kataoka & Serizawa (1989)
have, however, shown that the quantityφlul is a field quantity
and that so-called phase-weighted averaging of intermittent
liquid velocity signals can be performed as:

uli =
1

(te − ts)αl

te∑
ts

uli(t)φl(t) ·∆t, (13)

wherei denotes coordinate direction (i = 1, 2, 3).

The averaging of time signals is in this analysis done
starting from the time instantts = 4 in the case of bubble-
train and fromts = 1.5 in the bubble-swarm scenario. In
both cases the averaging is performed up to the time instant
te = 6. Obtained profiles of mean liquid velocities and
mean liquid volumetric fraction are presented in Figure 7a
for bubble-train and Figure 7b for bubble-swarm flow.

Fluctuating parts of liquid phase velocity evaluated as:

u
′

li(t) = uli(t)− uli, (14)

are also not field quantities. However, when they are multi-
plied withφl(t) their averaging can be performed in an anal-
ogous way as it is done by equation (13). Due to their rele-
vancy, the formulations of root-mean-square value of liquid
velocity fluctuations in the vertical direction:

ul1rms =

√√√√ 1
(te − ts)αl

te∑
ts

u
′
l1(t)u

′
l1(t)φl(t)∆t, (15)

and turbulence kinetic energy of the liquid phase:

kl =
1
2

1
(te − ts)αl

te∑
ts

u
′

li(t)u
′

li(t)φl(t)∆t (16)

are here given (in equation (16) summation over the indicei
applies). Profiles oful1rms andkl computed for investigated
bubble-array flows are presented in Figure 8.
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Figure 7: Profiles of mean quantities in bubble-array flows.

5 Evaluation of autocorrelation function from
temporal velocity signals computed by direct
numerical simulations of bubble-array flows

While the liquid phase indicator functionφl is sufficient
to determine liquid phase averaged quantities, a residual
problem has to be solved when autocorrelation function
of liquid velocity fluctuations is considered. The main
difficulty encountered when the autocorrelation function
in bubbly two-phase flow is computed, is that the liquid
velocity signal is frequently interrupted by bubble pas-
sages. This discontinuous character of the signal makes
it necessary to adopt a specific signal processing. In this
section four different methodologies are applied to evaluate
autocorrelation function of liquid velocity fluctuations in
stream-wise direction (x1) from aforementioned temporal

Figure 8: Profiles of turbulence quantities in bubble-array
flows.

velocity signals computed by DNS of bubble-array flows.

Currently, there are two approaches how to formulate the
autocorrelation function in bubbly flows.

Tsuji & Morikawa (1982), Gherson & Lykoudis (1984)
and Wanget al. (1990) apply the following single-phase for-
mulation of the autocorrelation function at time lagl∆t:

R11(l∆t) =
1

N − l

n=N−l∑
n=1

u
′

l1,nu
′

l1,n+l, (17)

and propose different methods for bridging over missing
parts of the signal. Gherson & Lykoudis (1984) suppress
parts of the signal concerning gas phase and patch corre-
sponding liquid velocity records. Wanget al. (1990) apply
so-called rectangular window technique, which assumes that
the parts of the signal indicating the gas phase velocity may
be replaced by the mean velocity of the liquid phase. Tsuji &
Morikawa (1982) analyzed possibilities for replacement of
the defective parts of the signal by suitable lines. They tested
three possible ways of interpolation: (i) to hold the liquid
velocity value before the defect, (ii) to adopt zero value of
velocity in periods of bubble passages and (iii) to replace the
gaps by straight lines connecting regular parts. The authors
recommended the third way as the most suitable method of
signal processing in bubbly flows.

Different to the aforementioned approaches, Panidis & Pa-
pailiou (2000) formulated an autocorrelation function, which
essentially presumes that the gas portion of the signal is filled
with segments having the same statistical properties as those
of the liquid velocity signal. An advantage of this assumption
is that the reconstruction of the missing parts of the signal is
not required. The authors started from the equation (17) and
assumed that the elimination of some of the products of the
autocorrelation function using a random functionm (which
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has the value 1 for the remaining parts and 0 for those to be
eliminated) will not alter the probability density function and
that the mean value can be estimated as:

R11(l∆t) =
1∑n=N−l

n=1 mn

n=N−l∑
n=1

mnu
′

l1,nu
′

l1,n+l, (18)

where mn (n = 1..N) for the case of time signals ob-
tained by direct numerical simulations can simply be esti-
mated from phase indicator function:

mn = φnφn+l, (19)

since no biased effects are introduced.

The autocorrelation functions evaluated applying the
aforementioned methods are compared in Figure 9 for the
case of bubble-train flow and in Figure 10 for bubble-swarm
flow. It is noted that respective autocorrelation functions
are evaluated at the positions for which time signals are
presented in Figure 5 and Figure 6. To provide a better
comparison of the autocorrelation functions at the three
positions in bubble-swarm flow, in Figure 10 the same range
has been chosen for the ordinate.

Figure 9 and Figure 10 show (i) that the graph of the auto-
correlation function obtained applying the method of Gher-
son & Lykoudis (1984) is shifted with respect to the graphs
of the other three methods (for the discussion of this topic
see the next section) and (ii) thatR11 magnitudes evaluated
by the aforementioned approaches significantly differ. As an
estimate od the performance of the considered methods in Ta-
ble 3 the magnitudes of the autocorrelation functions at zero
time lag are compared with the rms value od the liquid veloc-
ity fluctuations evaluated on the basis of its exact formulation
(see equation 15).

Figure 9: Autocorrelation functions evaluated for bubble-
train flow using different methods for signal pro-
cessing of temporal liquid velocity signals.

(a) x1 = 0.5, x2 = 0.25 andx3 = 0.25

(b) x1 = 0.5, x2 = 0.5 andx3 = 0.25

(c) x1 = 0.5, x2 = 0.85 andx3 = 0.25

Figure 10: Autocorrelation functions evaluated at different
span-wise positions in bubble-swarm flow using
different methods for signal processing of tempo-
ral liquid velocity signals .
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Table 3: Performance of different methods for signal pro-
cessing in bubbly flows in predicting rms value of
liquid velocity fluctuations

bubble-train bubble-swarm
x2

0.25 0.5 0.85

ul1rms
a 0.3595 0.4165 0.5154 0.5479

TM c b 0.4459 0.4577 0.6367 0.5239
PPdb 0.3595 0.5321 0.8240 0.9038
GL e b 0.3595 0.4164 0.5154 0.5479
W f b 0.3200 0.3857 0.4843 0.4937
a computed from equation (15)
b autocorrelation function at zero time lag,R11(0)
c Tsuji & Morikawa (1982)
d Panidis & Papailiou (2000)
e Gherson & Lykoudis (1984)
f Wanget al. (1990)

6 Analysis of energy spectra of liquid velocity
fluctuations in computed bubble-array flows

The one-dimensional energy spectra of liquid velocity
fluctuations in vertical (x1) direction evaluated by taking
the Fast Fourier Transformation of the aforementioned
autocorrelation functions are shown in Figure 11 for the
bubble-train flow and in Figure 12 for the bubble-swarm
flow, both in log-log and in semi-log coordinates (inset
graphics).

The lowest resolved frequency is in the case of bubble-
train flow Ω = 0.6 and Ω = 0.3 in the bubble-swarm
scenario. This difference arises from the following reason.
In order to apply the Fast Fourier Transformation correctly,
the number of sample points should be an integer power of
2. In that context, due to the longer period of steady state in
the bubble-swarm than in the bubble-train flow scenario, the
autocorrelation function could be evaluated along a longer
time lag in the former case (note that in Figure 9 and 10 the
whole length of considered time lag is not presented).

In order to determine the range of frequencies in which en-
ergy spectrum has physical significance, an attempt has been
made to estimate Kolmogorov time scale. The dimensionless
value of Kolmogorov time scale can be evaluated from:

τK = u1.5
ref l

−0.5
ref Re−0.5

ref (ε∗)−0.5, (20)

where ε∗ is dissipation rate of liquid turbulence kinetic
energy.

In this analysis the magnitude ofε∗ has been adopted
from Ilic (2006), where the liquid turbulence dissipation for
the same configuration of bubble-array flows as considered
here is evaluated on the basis of its rigorous mathematical
formulation. It is, however, noted that doing so (i) the
validity of Taylor hypothesis is assumed since in Ilic (2006)
a space (along vertical lines) and not the time averaging is

applied and (ii) that the spatial distribution of turbulence
energy dissipation obtained by Ilic (2006) has been averaged
to obtain one representative value.

The averaging is in the case of the bubble-swarm flow
done over the whole channel domain, what resulted in
ε∗ = 0.34m2/s3. With this value of the turbulence en-
ergy dissipation dimensionless Kolmogorov time scale of
τK = 0.0857 has been found. In relation the this, as the
upper limit of physically meaningful turbulence energy spec-
trum, the dimensionless frequency ofΩK = 1/τK = 11.67
has been set.

In the case of bubble-train flow, the averaging of spatially
distributed turbulence energy dissipation over the whole
channel has no physical background because the results
show that all the turbulence kinetic energy of the liquid
phase is fully dissipated in the flow region where the bubble
rises. Performing the averaging over this part of the channel
the mean value of the turbulence energy dissipation of
ε∗ = 0.22m2/s3 has been evaluated, what gave an estimate
of Kolmogorov time scale ofτK = 0.1064, i.e. something
lower value ofΩK = 1/τK = 9.40 than in the case of
bubble-swarm flow.

Figures 11 and 12 show pronounced peaks in energy
spectra evaluated for all the considered time signals and
with all the applied methodologies. The magnitudes of
frequencies at which these peaks appear are used as a
criterium to validate the performance of different approaches
for processing of defective liquid velocity signals in bubbly
flows. The value of the frequencies at which the peaks
in energy spectra appear should correspond to the time
that a bubble needs to rise the height of the flow domain.
Table 4 shows that the frequency of the peaks obtained
applying methods of Tsuji & Morikawa (1982), Panidis
& Papailiou (2000) and Wanget al. (1990) are in a good
agreement with the frequency of bubble passage,um

b1/l. On
the other side, the frequencies corresponding to the peaks in
the energy spectra evaluated by the method of Gherson &
Lykoudis (1984) do not agree with the frequency imposed
by the periodic boundary conditions in the rise direction.
This result is to expect since in the method of Gherson
& Lykoudis (1984) the gaps are not bridged over, but the
liquid signals are simply patched together, what results in a
shift of the spectrum peak toward higher frequencies. The
amount of the frequency shift depends on the time-averaged
gas volumetric fraction. The lower the time averaged gas
volumetric fraction, the lower is the frequency shift. In this
context, it can be concluded that the method of Gherson
& Lykoudis (1984) can give acceptable results only for
very low values of the temporal gas fraction. The results
of the present investigation cannot provide definition of the
maximal magnitude of the time averaged gas volumetric
fraction for which the approach of Gherson & Lykoudis
(1984) is valid, but it can be stated that it is lower than the
lowest value of temporal gas fraction of≈ 5% considered
here (see Figure 7).
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Table 4: Estimation of frequencies of energy dominant ed-
dies in investigated bubble-array flows.

bubble-train bubble-swarm
x2

0.25 0.5 0.85

um
b1/l a 3.59 2.03 2.35 2.31√
2kl/db 1.46 2.16 2.41 2.40

TMb PPc Wd 3.66 2.14 2.44 2.44
GLe 4.27 2.44 2.75 3.05
a um

b1 is the mean value of the rise velocity ofmth

bubble (see Figure 4) over here considered time
averaging interval

b Tsuji & Morikawa (1982)
c Panidis & Papailiou (2000)
d Wanget al. (1990)
e Gherson & Lykoudis (1984)

Finally, Table 4 shows, that in the case of the bubble-
swarm flow the frequencies at which peaks in the energy
spectra occur can be very well predicted if turbulence scales
are expressed in the following way: velocity scale evaluated
from liquid turbulence kinetic energy (

√
2kl) and length

scale adopted to be equivalent bubble diameter (db). It is,
however, noted that, this way has not given good predictions
of frequency of energy dominant eddies in bubble-train flow.

As the next criterion for the performance of different meth-
ods for signal processing in bubbly flows, the energy content
of the reconstructed signal is considered. In this context, the
fulfillment of the following property of one-dimensional en-
ergy spectra (Davidson (2004)):∫ ∞

0

F11(Ω)dΩ =
1
2
u2

l1rms, (21)

by the four different methods is put into consideration. It is,
however, noted that the integral in the above equation is eval-
uated up to the frequency corresponding to the Kolmogorov
time scale. The results presented in Table 5 show that all but
the method of Wanget al. (1990) overestimate turbulence
energy of the liquid phase. The highest overestimation is ob-
tained by the method of Panidis & Papailiou (2000) followed
by the method of Tsuji & Morikawa (1982). On average,
the methods of Gherson & Lykoudis (1984) and Wanget al.
(1990) give similar discrepancy in estimation of the liquid
turbulence energy, what is not surprising since Wanget al.
(1990) gap the signal by the mean value so that the energy
should have similar value as in the patched signal of Gherson
& Lykoudis (1984).

Finally, in Figure 12 it can be seen that there is a range
of frequencies for which turbulence energy spectra in log-log
plot show a constant slope of -1 for all four methods. This
value is significantly different from−5/3 or −8/3 usually
reported as the slope of the energy spectra in bubbly flows.
It is, however, recalled that the present paper deals with pure
bubble-induced so-called pseudo turbulence, where any sig-
nificant shear is not present. Especially due to the absence

Table 5: Performance of different methods for signal pro-
cessing in bubbly flows in predicting kinetic energy
of liquid velocity fluctuations in vertical direction.

bubble-train bubble-swarm
x2

0.25 0.5 0.85

u2
l1rms/2 a 0.0646 0.0867 0.1328 0.1501

TM c b 0.2109 0.1018 0.2379 0.2746
PPdb 0.1496 0.1328 0.3637 0.6087
GL e b 0.0890 0.0926 0.1779 0.18726
W f b 0.0981 0.0659 0.1262 0.1494
a ul1rms computed from equation (15)
b computed as l.h.s. of equation (21)
c Tsuji & Morikawa (1982)
d Panidis & Papailiou (2000)
e Gherson & Lykoudis (1984)
f Wanget al. (1990)

of the shear one may not expect an inertial subrange with a
spectral slope close to−5/3. This result is, further, in accor-
dance with the theoretical considerations of Lance & Bataille
(1991), who reported the slope of the power spectrum at low
wave numbers of−1 for bubbly flows in which the pseudo-
turbulence is dominant.

Figure 11: Axial turbulent energy spectra evaluated for
bubble-train flow.

Conlusions

This paper presents investigations of liquid velocity fluctu-
ations due to the presence of bubbles and their relative mo-
tion. The investigations are based on direct numerical simu-
lations of liquid flows driven by monodisperse bubble-arrays.
The goal of the performed work was to shed some light on
the structure and dynamics of turbulence in gas-liquid flows
through evaluation and analysis of the time / space correla-
tions of the fluctuating velocity field in the continuous liquid
phase.
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(a) x1 = 0.5, x2 = 0.25 andx3 = 0.25

(b) x1 = 0.5, x2 = 0.5 andx3 = 0.25

(c) x1 = 0.5, x2 = 0.85 andx3 = 0.25

Figure 12: Axial turbulent energy spectra evaluated at differ-
ent span-wise positions for bubble-swarm flow

In particular, attention has been paid to performance of
different approaches for bridging over the gaps in the liquid
velocity signal due to bubble passages.

The method of Gherson & Lykoudis (1984) where the
liquid velocity signals are patched together and the gaps
due to bubble passage are removed does not give correct
frequency of the most energetic turbulence scales. This
frequency is overestimated and the amount of overestimation
depends on the mean temporal gas fraction at the sensor
position. The method can, therefore, not be recommended
in general, but only for very low gas contents. The methods
of Panidis & Papailiou (2000) and of Tsuji & Morikawa
(1982) give the correct frequency of energy spectrum peak,
but overestimate the energy of the signal. Finally, the
method proposed by Wanget al.(1990) seems to be the most
promising one, since it was able to predict correct frequency
of energy spectrum peak and to give reasonable predictions
of the energy content of the liquid velocity fluctuations.

In the present simulations, the intensity of the pseudo-
turbulence is rather small. It was, therefore, not a goal to
make statements regarding the slope of the one-dimensional
power spectrum at high frequencies. However, it is inter-
esting to note that always a slope of -1 is found which is
in agreement with the theoretical considerations of Lance &
Bataille (1991) for flows dominated by pseudo-turbulence.

Nomenclature

ai interfacial area concentration
d diameter
Eo Eotvos number
f liquid volumetric fraction
F11 Turbulent energy spectrum
g gravitational acceleration
g gravity vector
l length
M Morton number
n number of bubbles in domain
n unit normal vector at phaase interface
p pressure
r position vector to bubble center-of-mass
R11 Autocorrelation function
Re Reynolds number
t time
u velocity
V volume
We Weber number
x1, x2, x3 Cartesian coordinates
x position vector

Greek letters
α volume fraction
Γρ Gas-to-liquid density ratio
Γµ Gas-to-liquid viscosity ratio
κ interface curvature
µ dynamic viscosity
ρ density
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σ coefficient of surface tension
Ω frequency

Subscripts
1,2,3 coordinate indices
b bubble
g gas
i interface
l liquid
ref reference value

Superscripts
* dimensional quantity
m bubble index
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