Diplomarbeit

Mechanismusentwicklung für die Umsetzung von NO zu NO₂ über Platin

Denise Chan

26. April 2010

Karlsruher Institut für Technologie (KIT)
Institut für Technische Chemie und Polymerchemie
Arbeitskreis Prof. Dr. O. Deutschmann
"Zwei Dinge sind zu unserer Arbeit nötig: Unermüdliche Ausdauer und die Bereitschaft, etwas, in das man viel Zeit und Arbeit gesteckt hat, wieder wegzuworfen."

Albert Einstein, 1879-1955
# Inhaltsverzeichnis

1. **Einleitung**  
   
2. **Stand der Technik**  
   2.1. Nachbehandlung von Dieselabgasen  
   2.2. Diesel-Oxidationskatalysator  

3. **Theoretische Grundlagen der Modellierung**  
   3.1. Allgemeines  
   3.2. Reaktionskinetik  
      - 3.2.1. Reaktionen auf katalytischen Festkörper-Oberflächen  
      - 3.2.2. Mean-Field-Approximation  
      - 3.2.3. Oberflächenreaktionen  
      - 3.2.4. Elementarreaktionen  
   3.3. Thermodynamische Konsistenz  
   3.4. Modellierung von Wabenkatalysatoren  
      - 3.4.1. Vorgehensweise  
      - 3.4.2. Modellierung reaktiver Strömungen  
   3.5. Programmpaket DETCHEM  
      - 3.5.1. Allgemeine Programmstruktur  
      - 3.5.2. DETCHEM\textsuperscript{CSTR-CASCADE}  

4. **Stand der Forschung zur NO-Oxidation**  
   4.1. Allgemeines  
   4.2. Mechanismus  
   4.3. Desaktivierung von Platin  
   4.4. Kinetische Modelle
5. Experimentelle Untersuchungen zur katalytischen Aktivität 40
5.1. Messungen im Flachbettreaktor 40
5.1.1. Versuchsaufbau 40
5.1.2. Light-Off-/Out Messungen 43
5.1.3. Stationäre Messungen 43
5.2. Messungen im Integralreaktor 44
5.2.1. Versuchsaufbau 44
5.2.2. Katalysator 45
5.2.3. Light-Off-/Out Messungen 45
5.2.4. Stationäre Messungen 46

6. Mechanismusentwicklung 47
6.1. Allgemeines 47
6.1.1. Vorgehensweise 47
6.1.2. Druck- und Materiallücke 49
6.2. Elementarkinetik der NO-Oxidation auf Platin 51
6.2.1. Allgemeines 51
6.2.2. Sorptionseigenschaften von NO 52
6.2.3. Sorptionseigenschaften von NO$_2$ 54
6.2.4. Sorptionseigenschaften von O$_2$ 55
6.2.5. NO-Oxidation und NO$_2$-Dissoziation 55
6.2.6. Oberflächenbedeckung 56
6.2.7. Platinoxidbildung 57
6.3. Modellansätze für die oxidative Katalysatordesaktivierung 60

7. Diskussion der Ergebnisse 62
7.1. Modellierung der Hauptmann-Experimente 62
7.2. Modellierung FVV-Experimente 64
7.2.1. DOC 120 64
7.2.2. DOC 20 65

8. Zusammenfassung und Ausblick 67

A. Publizierte Adsorptionswärmen und kinetische Parameter i
A.1. Adsorptionswärmen für NO, NO$_2$ und O$_2$ ii
A.2. Kinetische Parameter der Adsorption von NO, NO$_2$ und O$_2$ iv
A.3. Kinetische Parameter der Desorption von NO, NO$_2$ und O$_2$ vi
Inhaltsverzeichnis

A.4. Kinetische Parameter der NO-Oxidation und NO$_2$-Dissoziation . . . viii

B. Neu entwickelte Reaktionsmechanismen für die NO-Oxidation über Platin ix

C. Simulationsergebnisse des stationären Verhaltens des DOC 120 xi
1. Einleitung

Die zunehmende Industrialisierung sowie Globalisierung der Welt eröffnet der Menschheit nicht nur neue Möglichkeiten, sondern stellt sie auch vor neue Probleme. Um eine nachhaltige Entwicklung zu garantieren, müssen die Folgen anthropologischen Handelns für die Umwelt abgewogen und gegebenenfalls eingedämmt werden. Im Kontext des Straßenverkehrs stellen die Optimierung der Kraftstoffeffizienz sowie die Vermeidung von Schadstoffen eine Herausforderung für die Automobilindustrie und die Forschung dar.

Unter idealen Bedingungen wird der Kraftstoff vollständig zu Kohlenstoffdioxid und Wasser verbrannt:

\[ C_m H_n + (m + 0,25 n) O_2 \rightarrow m CO_2 + 0,5 n H_2O \]

In der Realität erfolgt die Verbrennung jedoch unvollständig und nicht selektiv, wodurch unerwünschte Abgase entstehen, die die Gesundheit gefährden und der Umwelt schaden. Gründe dafür können zu niedrige Temperaturen (bspw. in der Kaltstartphase), der Mangel an Sauerstoff oder zu kurze Verweilzeiten sein. Die Hauptschadstoffe, die bei der Kraftstoffverbrennung entstehen, sind Kohlenwasserstoffe, CO und NO\textsubscript{x} sowie Partikel im Abgas von Dieselmotoren. CO ist ein giftiges Gas, welches im Blut an Hämoglobin gebundenen Sauerstoff verdrängt und zur Erstickung führen kann, wenn es in größeren Mengen eingeatmet wird.

Stickoxide entstehen entweder durch Verbrennung stickstoffhaltiger Verbindungen, die in Form von Amiden, Aminen und heterocyclischen Verbindungen in Kraftstoffen vorhanden sind oder durch Reaktion atmosphärischen Stickstoffs mit Sauerstoff. Als Hauptprodukt entsteht dabei NO, welches unter atmosphärischen Bedingungen langsam zum giftigeren NO\textsubscript{2} oxidiert wird. Die Reaktion von Stickstoffdioxi
d mit Wasser führt zur Bildung von Salpetersäure und trägt somit zum sauren Regen bei. Auch fördern Stickoxide die Entstehung von Smog, was Atemwegser-
1. Einleitung

krankungen hervorrufen und verschlimmern kann [1]. Außerdem verursachen sie bei Sonneneinstrahlung die Bildung troposphärischen Ozons [2], was zu Atemproblemen und Pflanzenschäden führt sowie den Treibhauseffekt verstärkt:

\[
\begin{align*}
N_2 + O_2 & \rightarrow 2 NO \\
2 NO + O_2 & \rightarrow 2 NO_2 \\
NO_2 + h\nu & \rightarrow NO + O \\
O + O_2 + M & \rightarrow O_3 + M
\end{align*}
\]


Eine sich über die Jahre verschärfende Gesetzgebung (s. Tabelle 1.1) macht weitere Forschungsanstrengungen auf diesem Gebiet erforderlich.

<table>
<thead>
<tr>
<th>Schadstoff</th>
<th>EURO 1 [g/km]</th>
<th>EURO 2</th>
<th>EURO 3</th>
<th>EURO 4</th>
<th>EURO 5</th>
<th>EURO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>2,72</td>
<td>1,0</td>
<td>0,64</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>HC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>0,25</td>
<td>0,2</td>
<td>0,08</td>
</tr>
<tr>
<td>HC + NO\textsubscript{x}</td>
<td>0,97</td>
<td>0,9</td>
<td>0,56</td>
<td>0,3</td>
<td>0,25</td>
<td>0,17</td>
</tr>
<tr>
<td>Partikel</td>
<td>0,14</td>
<td>0,1</td>
<td>0,05</td>
<td>0,025</td>
<td>0,005</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Tabelle 1.1.: Europäische Abgasgrenzwerte für Pkw mit direkteinspritzendem Dieselmotor bis 3,5 t Gesamtgewicht [4,5]

Außerdem muss der Kraftstoffverbrauch von Fahrzeugen nicht nur aufgrund der angesprochenen Schadstoffemissionen, sondern auch angesichts eines begrenzten
Vorrats an fossilen Rohstoffen sowie der unvermeidbaren Emission des Treibstoff- 
abgases CO\textsubscript{2} nach Möglichkeit reduziert werden. Dies ist durch den Einsatz von 
mager betriebenen Verbrennungsmotoren möglich, die im niedrigen und mittleren 
Lastbereich dem um den stöchiometrischen Punkt betriebenen Ottomotor in der 
Kraftstoffeffizienz weitaus überlegen sind.

Da in diesen direkteinspritzenden Benzinmotoren jedoch der Treibstoff wie in Die-
selmotoren unter Sauerstoffüberschuss verbrannt wird, stellt die selektive Reduk-
tion von Stickoxiden im Abgas hier eine technische Herausforderung dar. Die weit 
verbreiteten Dreiegekatalysatoren sind nämlich nur unter stöchiometrischen Be-
dingungen instande, sowohl die Oxidation von CO und Kohlenwasserstoffen zu 
CO\textsubscript{2} und H\textsubscript{2}O als auch die Reduktion von Stickoxiden zu Stickstoff zu gewähr-
leisten. Somit können Stickoxide auf diesem Weg bei magerem Betrieb nicht mehr 
ausreichend umgesetzt werden.

Abbildung 1.1.: Umsatz von Schadstoffen an einem Dreiegekatalysator in Abhän-
gigkeit des \(\lambda\)-Wertes (siehe Abschnitt 2.1) [6]

In den letzten Jahren wurden zur Lösung dieses Problems verschiedene Tech-
nologien entwickelt und kommerzialisiert [7]. Die beiden bedeutendsten sind die 
selektive katalytische Reduktion (SCR, \textit{Selective Catalytic Reduction}) und NO\textsubscript{x}- 
Speicherkatalysatoren (NSR, \textit{NO\textsubscript{x} Storage and Reduction}).

Die SCR-Technologie basiert auf der selektiven Reduktion von Stickoxiden mit 
stickstoffhaltigen Reduktionsmitteln wie Ammoniak oder Ammoniakvorläufern wie 
Harnstoff und Ammoniumcarbamat über V\textsubscript{2}O\textsubscript{5}/WO\textsubscript{3}/TiO\textsubscript{2}-Katalysatorsystem. Da-
bei steigt der erwünschte Umsatz zu Stickstoff erheblich, wenn im Voraus ein Teil
1. Einleitung

des NO zu NO₂ oxidiert wird [8]. Auch bei der selektiven Reduktion von Stick-
oxiden mit Kohlenwasserstoffen (HC-SCR) über Pt/Al₂O₃ wurde beobachtet, dass
die NO-Oxidation einen wesentlichen Reaktionsschritt darstellt, wenn Alkane als
Reduktionsmittel eingesetzt werden. Man vermutet, dass NO zunächst zu NO₂
umgesetzt wird, welches dann mit dem Alkan zu Stickstoff reagiert [9].

Darüber hinaus spielt die NO-Oxidation bei NOₓ-Speicherkatalysatoren eine Schlüs-
selfelle. Die Grundlage dieser Technologie zur Entfernung von Stickoxiden aus
Autoabgasen bildet eine NOₓ-Speicherkomponente, wobei sich Bariumcarbonat
hierfür etabliert hat. Das Prinzip der NOₓ-Speicherung beruht auf der Tatsache,
dass sehr basische Erdalkali- und Alkalimetaalloxide in der Lage sind, Nitrate zu
bilden, die bis 600°C stabil sind. Stark vereinfacht kann der Einspeicherungspro-
zess, der unter nüchternen Bedingungen erfolgt, durch folgende Reaktionsgleichungen
zusammengefasst werden:

\[
2 \text{NO} + \text{O}_2 \rightleftharpoons 2 \text{NO}_2
\]

\[
2 \text{NO}_2 + \frac{1}{2}\text{O}_2 + \text{BaCO}_3 \rightleftharpoons \text{Ba(NO}_3)_2 + \text{CO}_2
\]

Um den NOₓ-Speicher zu regenerieren, müssen sich lange Einspeicherungsphasen
von mehreren Minuten sauerstoffreicher Abgaszusammensetzung mit kurzen Pha-
sen sauerstoffarmer Abgaszusammensetzung (wenige Sekunden) zyklisch abwech-
seln. Der NOₓ-Speicher kann durch diverse Reduktionsmittel, die in Autoabgasen
unter fetten Bedingungen in ausreichenden Mengen vorkommen, regeneriert wer-
den, was folgendermaßen beschrieben werden kann:

\[
\text{Ba(NO}_3)_2 + 3 \text{CO} \rightleftharpoons \text{BaCO}_3 + 2 \text{NO} + 2 \text{CO}_2
\]

\[
\text{Ba(NO}_3)_2 + 3 \text{H}_2 + \text{CO}_2 \rightleftharpoons \text{BaCO}_3 + 2 \text{NO} + 3 \text{H}_2\text{O}
\]

\[
\text{Ba(NO}_3)_2 + \frac{1}{3}\text{C}_3\text{H}_6 \rightleftharpoons \text{BaCO}_3 + 2 \text{NO} + \text{H}_2\text{O}
\]

Die detaillierten Mechanismen sind zwar komplex und bis heute nicht vollständig
verstanden, jedoch ist man sich darüber einig, dass die Einspeicherung von NO₂
gegenüber der Einspeicherung von NO erheblich begünstigt ist und die vorangehen-
de Oxidation von NO zu NO₂ somit einen wichtigen Reaktionsschritt darstellt [10].

Eine weitere Technologie, die auf die NO-Oxidationsreaktion angewiesen ist, ist die
kontinuierliche Regeneration von Dieselsrumpartikelfiltern (CRT, Continuous Rege-
neration Trap) durch Verbrennung von Rußrückständen mit NO₂ [8].

Aufgrund der großen Bedeutung der heterogen katalysierten NO-Oxidationsreaktion gibt es zahlreiche experimentelle und theoretische Untersuchungen zu diesem Thema, wobei an späterer Stelle dieser Arbeit näher auf einige davon eingegangen wird. Trotzdem sind die Einzelheiten bis zum aktuellen Zeitpunkt noch nicht verstanden, sodass es weiterer Forschungsbemühungen bedarf. Eine Optimierung der oben genannten Technologien für die Verminderung der Schadstoffemissionen durch Kraftfahrzeuge ist aufgrund ihrer Schlüsselrolle nur durch ein verbessertes Verständnis der heterogen katalysierten NO-Oxidation möglich. Am Beispiel der Beseitigung von Stickoxiden aus Autoabgasen ist zu erkennen, dass durchaus Verbesserungspotenzial besteht. Denn trotz der technischen Fortschritte in den letzten Jahren ist der Statistik des Umweltbundesamtes (Abbildung 1.2) zu entnehmen, dass der Straßenverkehr noch immer die Hauptquelle anthropogener Stickoxidemissionen in der Bundesrepublik ist.

Abbildung 1.2.: Hauptquellen der NOₓ-Emissionen

Numerische Simulationen, die auf detaillierten Mechanismen basieren, stellen ein nützliches Werkzeug dar, um eine bessere Kenntnis des Systems zu gewinnen,
1. Einleitung

sofern sie auf sowohl physikalisch als auch chemisch korrekte Grundmodelle zurückzuführen sind. Somit können sie zum einen bei der Bestimmung optimaler Prozessparameter für bereits bestehende Verfahren helfen und zum anderen die Interpretation von Versuchsergebnissen erleichtern, was bei der Entwicklung neuer Verfahren von Bedeutung sein kann.

Ziel dieser Arbeit ist es, durch die Entwicklung eines elementärkinetischen Reaktionsmechanismus für die NO-Oxidation auf Platin, der auch die Selbstinhibierung durch NO\textsubscript{2} beinhalten, das Verständnis für dieses Reaktionssystem zu verbessern.
2. Stand der Technik

2.1. Nachbehandlung von Dieselabgasen

In der folgenden Abbildung ist der prinzipielle Aufbau eines Nachbehandlungssystems für Dieselabgase mit NO\textsubscript{x}-Speicherkatalysator schematisch dargestellt. Bei einem System, in welchem die SCR-Technologie Anwendung findet, würde sich anstelle des NO\textsubscript{x}-Speicherkatalysators ein SCR-Katalysator befinden. Ein Nachbehandlungssystem für Dieselabgase besteht im Allgemeinen aus einem Oxidationskatalysator, einem Katalysator für die selektive Reduktion von Stickoxiden zu Stickstoff, sowie einem Rußpartikelfilter. Zur Überwachung des Systems dienen λ-Sonden, die den λ-Wert im Abgas elektrochemisch messen. Der λ-Wert ist dabei als Quotient aus der tatsächlich zur Verfügung stehenden Luftmasse und der Mindestluftmasse, die für eine vollständige Verbrennung benötigt wird, definiert. So steht λ > 1 für magere und λ < 1 für fette Abgaszusammensetzungen.

Abbildung 2.1.: Abgasnachbehandlung bei Dieselfahrzeugen [Quelle: Robert Bosch GmbH]
2. Stand der Technik

Abbildung 2.1 ist zu entnehmen, dass dem NO\textsubscript{x}-Speicher- und Reduktionskatalysator und dem Rußpartikelfilter ein Oxidationskatalysator vorgeschaltet ist. Wie bereits in der Einleitung erklärt, ist die Erhöhung des Anteils an NO\textsubscript{2} gegenüber der Menge an NO in Dieselabgasen für eine optimale Funktionsweise der aktuellen Technologien zur Abgasnachbehandlung unerlässlich. Daher ist es neben der Umsetzung von Kohlenwassertoffen und Kohlenmonoxid zu Kohlenstoffdioxid und Wasser Aufgabe des Diesel-Oxidationskatalysators (DOC), Stickoxide zu NO\textsubscript{2} zu oxidieren.

2.2. Diesel-Oxidationskatalysator

Da im Rahmen dieser Arbeit das Verhalten von Diesel-Oxidationskatalysatoren bezüglich der NO-Oxidation modelliert wird, soll an dieser Stelle ihre Funktionsweise sowie ihr allgemeiner Aufbau beschrieben werden.

Abbildung 2.2.: a) Monolithischer Träger [2]  
  b) Washcoat beschichtete Kanäle eines keramischen Monolithen [3]

2.2. Diesel-Oxidationskatalysator

verteilt, welches wiederum auf einen monolithischen Keramikträger aufgebracht wird. Dabei beträgt die Partikelgröße von Platin in herkömmlichen Autoabgaskatalysatoren mindestens 10 nm, weshalb die Oberfläche der Edelmetallkomponente als Pt(111)-Oberfläche betrachtet werden kann [11, 12].

In Autoabgaskatalysatoren wird $\gamma$-$\text{Al}_2\text{O}_3$ am häufigsten als Washcoatmaterial eingesetzt, da es mit $160 - 250 \text{ m}^2/\text{g}$ eine große spezifische Oberfläche aufweist. Der Washcoat dient nicht nur dazu, die Oberfläche des Katalysators ungefähr um das 10000-fache zu vergrößern [3], sondern hat auch die Aufgabe, selbst unter extremen Betriebsbedingungen die hohe Edelmetalldispersion zu stabilisieren. Aufgrund der Mobilität der Edelmetallpartikel sintern diese nämlich bei hohen Temperaturen leicht zu energetisch günstigeren größeren Teilchen. Dies wird durch stark bindende Wechselwirkungen zwischen anorganischem Oxid und den Edelmetallclustern erschwert, kann jedoch nicht vollständig verhindert werden. So führen hohe Temperaturen bis über 800°C, die in Autoabgasen auftreten können, zu einer Agglomeration der ursprünglich nanodispers verteilten Edelmetallpartikel.

Eine weitere Funktion des Washcoats ist die des elektronischen Promotors. So erschwert saures Trägermaterial wie $\text{Al}_2\text{O}_3$ die Desaktivierung von Platin durch Platinoxidbildung unter mageren Bedingungen, indem es die 5d-Elektronendichte von Platin erniedrigt und damit eine Schwächung der Platin-Sauerstoff-Bindung verursacht [13].

Aufgabe des Katalysatorträgers ist es, auf geringem Raum eine möglichst große geometrische Oberfläche für heterogen katalysierte Prozesse bereitzustellen. Er soll eine hohe mechanische und thermische Stabilität mit einem geringen Gewicht vereinbaren sowie einen geringen Strömungswiderstand aufweisen. Da keramische Wabenkörper alle Anforderungen erfüllen, haben sie sich als Katalysatorträger bewährt. Meist werden sie durch Extrusion synthetischen Cordierits der Zusammensetzung $2\text{MgO} \cdot 2\text{Al}_2\text{O}_3 \cdot \text{SiO}_2$ hergestellt, da dieses keramische Oxid neben einem hohen Schmelzpunkt von über 1300°C und einer hohen mechanischen Stabilität auch einen sehr kleinen Wärmeausdehnungskoeffizienten besitzt, was für die Haltbarkeit unter den extremen Temperaturschwankungen, denen der Katalysator ausgesetzt sein kann, unerlässlich ist [3]. Darüber hinaus zeichnet sich Cordierit aufgrund seiner Porosität durch starke adhäsive Wechselwirkungen mit dem Washcoatmaterial aus, was einen guten mechanischen Halt gewährleistet. Heutzuta-
ge besitzen diese Monolithe normalerweise eine Zelldichte von 400 cps (channels per square inch) und eine Wanddicke von 0,15 mm. Durch Erhöhung der Anzahl der Kanäle pro Querschnittsfläche und Verringerung der Wanddicke können die Eigenschaften des Monolithen bezüglich geometrischer Oberfläche und Wärmeübertragung verbessert werden. Jedoch setzen hier Stömungswiderstand sowie mechanische Festigkeit Grenzen.
3. Theoretische Grundlagen der Modellierung

Die in diesem Kapitel dargestellten Grundlagen basieren auf umfangreichen Vorarbeiten von Deutschmann, Chatterjee und Tischer [14–16].

3.1. Allgemeines

In dieser Arbeit werden monolithische Katalysatoren simuliert. Dabei dient zur Beschreibung der physikalischen und chemischen Prozesse, die auf mehreren Ebenen ablaufen, ein einzelner repräsentativer Kanal. Im Einzelnen sind folgende Vorgänge zu beachten:

- Transport von Impuls, Energie und chemischen Spezies in der Gasphase durch Konvektion in Strömungsrichtung
- Transportvorgänge durch Diffusion
- Diffusion der chemischen Spezies innerhalb einer porösen Washcoatschicht
- Adsorption gasförmiger Spezies auf katalytisch aktiven Zentren
- Reaktion adsorbierter Spezies entweder untereinander oder mit Spezies aus der Gasphase
- Transport der Produkte durch Diffusion und Konvektion in die Gasphase

Die Simulation heterogen katalytischer Prozesse lässt sich in die Modellierung chemischer Reaktionen einerseits und die detaillierte mathematische Beschreibung der Kanalströmung im Monolithen andererseits aufteilen. Zunächst soll die Simulation chemischer Reaktionen näher erläutert werden.
3. Realistische Grundlagen der Modellierung

Abbildung 3.1.: Chemische und physikalische Prozesse in einem Kanal eines Wabenkatalysators [16]

3.2. Reaktionskinetik

Aufgrund der bei der NO-Oxidation herrschenden niedrigen Temperaturen und Drücke sowie der schnellen Strömungsgeschwindigkeit des Autoabgases und der damit verbundenen geringen Aufenthaltszeit im Katalysator können Gasphasenreaktionen vernachlässigt werden [17]. Daher soll im Folgenden nur auf die Modellierung heterogener Reaktionen eingegangen werden.

3.2.1. Reaktionen auf katalytischen Festkörper-Oberflächen

Bei der heterogenen Katalyse liegt der Katalysator in einem anderen Aggregatzustand vor als Reaktanden und Produkte. Im Fall der Gas-/Feststoff-Katalyse reagieren Moleküle aus der Gasphase an der Oberfläche eines katalytisch aktiven Festkörpers. Im Allgemeinen lassen sich die Reaktionen auf Oberflächen in drei Typen unterteilen:

1. Reaktionen, bei denen Moleküle aus der Gasphase eine Bindung mit der festen Phase eingehen (Adsorption)

2. Reaktionen, bei denen das Adsorbat den Adsorbens verlässt (Desorption)

3. Reaktionen mit bzw. zwischen Adsorbaten
3.2. Reaktionskinetik

Adsorption


Somit ist in dieser Arbeit nur die Chemisorption, bei der chemische Bindungen - meist kovalenter Art - zwischen Molekülen aus der Gasphase und dem Festkörperkatalysator gebildet werden, von Relevanz. Da sehr hohe Adsorptionswärmen möglich sind ($40 - 800 \text{ kJ mol}^{-1}$), können Bindungen von adsorbierten Molekülen derart angeregt werden, dass es zur Bindungsspaltung kommt. In diesem Fall liegt eine dissoziative Adsorption vor. Ein Beispiel hierfür ist die Adsorption von Sauerstoff auf Platin.

In der Regel besitzen Adsorptionsprozesse sehr geringe Aktivierungsergierien, weshalb man sie häufig näherungsweise als unaktiviert betrachten kann. Einen weit aus größeren Einfluss auf die Oberflächenbedeckung eines Katalysators als die Aktivierungsenergie für die Chemisorption und somit auch auf die Kinetik von heterogen katalysierten Reaktionen haben hingegen Haftkoeffizienten, die ein Maß für die Adsorptionswahrscheinlichkeit sind und sich um mehrere Größenordnungen voneinander unterscheiden können, sowie die Aktivierungsenergie der Desorption einzelner Spezies.

Desorption

Ebenso wie bei der Chemisorption sowohl molekulare als auch dissoziative Adsorption existieren, unterscheidet man bei der Desorption zwischen molekularen und assoziativen Prozessen.
3. Theoretische Grundlagen der Modellierung

Mit Hilfe der Theorie des Übergangszustandes können die Größenordnungen präexponentieller Faktoren (siehe Gleichung 3.7) auf der Grundlage von Annahmen über Freiheitsgrade der Adsorbate und des aktivierten Komplexes abgeschätzt werden [19]. Daraus ergibt sich, dass präexponentielle Faktoren für die molekulare Desorption im Bereich von $10^{13} - 10^{16}$ s liegen, während die der assoziativen Desorption einen größeren Bereich von $10^{8} - 10^{16}$ s einnehmen. Werden Reaktionsraten - wie im Fall des Programms DETCHEM, das in der vorliegenden Arbeit zur Modellierung heterogen katalytischer Prozesse verwendet wird - über Konzentrationen statt Oberflächenbedeckungsgraden berechnet, so muss die Oberflächenplatzdichte $\Gamma$ (siehe Abschnitt 3.2.2) bei der Angabe des präexponentiellen Faktors berücksichtigt werden. Dabei gilt für Reaktionen zwischen zwei Oberflächenspezies:

$$A \left[ \frac{\text{cm}^2}{\text{mol s}} \right] = \frac{A'}{\Gamma} \left[ \frac{1}{\text{mol cm}^2} \right]$$

(3.1)

Reaktionen mit und zwischen Adsorbaten

Man unterscheidet prinzipiell zwischen zwei Reaktionsabläufen [20]:

1. Der Langmuir-Hinshelwood-Mechanismus bezeichnet den Verlauf der Produktbildung über eine Reaktion von Adsorbaten untereinander:

   \[
   A(g) + (s) \rightleftharpoons A(s) \\
   B(g) + (s) \rightleftharpoons B(s) \\
   A(s) + B(s) \rightleftharpoons AB(s) + (s) \\
   AB(s) \rightleftharpoons AB(g) + (s)
   \]

   Präexponentielle Faktoren bimolekularer Reaktionen liegen dabei in der Größenordnung von $10^{8} - 10^{13}$ s⁻¹.

2. Der Eley-Rideal-Mechanismus geht davon aus, dass das Produkt durch Reaktion eines Moleküls aus der Gasphase mit einem Adsorbat gebildet wird, wobei es häufig unmittelbar nach seiner Entstehung die Oberfläche verlässt:

   \[
   A(g) + (s) \rightleftharpoons A(s) \\
   A(s) + B(g) \rightleftharpoons AB(g) + (s)
   \]

20
3.2. Reaktionskinetik

3.2.2. Mean-Field-Approximation

Da wenig über die zahlreichen verschiedenen Oberflächenstrukturen und die damit einhergehenden unterschiedlichen Adsorptionsplätze bekannt ist, wird in dieser Arbeit zur Modellierung von heterogen katalytischen Systemen von mikrokinetischen Ansatz der Mean-Field-Approximation ausgegangen, die elementare Prozesse über Mittelwerte berücksichtigt. Diese Näherung beinhaltet die Annahme, dass Adsorbate zufällig auf der Oberfläche verteilt sind. Der Zustand der Katalysatoroberfläche wird über lokal gemittelte Bedeckungsgrade $\Theta_i$ beschrieben, die von der Position im Reaktor abhängen.

Jeder Oberflächenspezies $i$, wobei sowohl adsorbierte Teilchen als auch freie Oberflächenplätze als solche gelten, kann ein Bedeckungsgrad $\Theta_i$ zugeordnet werden. Dieser gibt an, welchen Anteil der Oberfläche die entsprechende Spezies einnimmt. Wenn $N_s$ die Anzahl der Oberflächenspezies bezeichnet, gilt:

$$\sum_{i=1}^{N_s} \Theta_i = 1 \quad (3.2)$$

Die zeitliche Änderung der Bedeckungsgrade ist gegeben durch:

$$\frac{\partial \Theta_i}{\partial t} = \frac{\dot{s}_i \sigma_i}{\Gamma} \quad (3.3)$$

Hierbei ist $\dot{s}_i$ die molare Bildungsgeschwindigkeit der Oberflächenspezies $i$, und $\sigma_i$ die Anzahl der Oberflächenplätze, die ein Teilchen der Spezies $i$ belegt. Die Oberflächenplatzdichte $\Gamma$ charakterisiert die reaktive Oberfläche, indem sie die Anzahl der zur Adsorption zur Verfügung stehenden Adsorptionsplätze pro Fläche angibt. Die Oberflächenplatzdichte ist vom betrachteten Material abhängig und variiert in Abhängigkeit von der Oberflächenstruktur. Für die Platinoberfläche wird in dieser Arbeit ein Wert von $2,72 \cdot 10^{-9} \text{ mol cm}^{-2}$ verwendet, was der Dichte von Platinatomen auf einer Pt(111)-Oberfläche entspricht.
3. Theoretische Grundlagen der Modellierung

3.2.3. Oberflächenreaktionen

Allgemein lässt sich ein Reaktionsmechanismus in folgender Form ausdrücken:

\[
\sum_{i=1}^{N_g+N_s} \nu'_{ik}A_i \rightarrow \sum_{i=1}^{N_g+N_s} \nu''_{ik}A_i \quad \text{mit} \quad k = 1, \ldots, K_s
\]  

(3.4)

In der oben stehenden Gleichung ist \( A_i \) das Symbol für die i-te Spezies. \( N_s \) ist die Anzahl der Oberflächen spezies, \( N_g \) die Anzahl der Gasphasenspezies und \( K_s \) die Gesamtzahl der Oberflächenreaktionen einschließlich Adsorption und Desorption. \( \nu''_{ik} \) und \( \nu'_{ik} \) stellen jeweils die stöchiometrischen Koeffizienten der Edukte und der Produkte dar. Die Gleichung kann stets derart formuliert werden, dass \( \nu'_{ik} \) und \( \nu''_{ik} \) ganzzahlig sind. Ihre Differenz soll als \( \nu_{ik} \) bezeichnet werden:

\[
\nu_{ik} := \nu'_{ik} - \nu''_{ik}
\]  

(3.5)

Die Reaktionsordnung sei \( \tilde{\nu}'_{jk} \). Nun lässt sich die Bildungsrate \( \dot{s}_i \) der Spezies i folgendermaßen beschreiben:

\[
\dot{s}_i = \sum_{k=1}^{K_s} \nu_{ik} k_{fk} \prod_{j=1}^{N_g+N_s} c_j^{\tilde{\nu}'_{jk}}
\]  

(3.6)

Üblicherweise werden die Konzentrationen der Gasphasenspezies in \( \text{mol} \ m^{-3} \) und die der Oberflächen spezies in \( \text{mol} \ m^{-2} \) angegeben. Die Oberflächenkonzentration \( c_j \) einer Spezies j berechnet sich aus dem Produkt der Oberflächenbedeckung dieser Spezies \( \Theta_j \) und der Oberflächenplatzdichte \( \frac{\Theta_j}{\sigma_j} \), wobei \( \sigma_j \) die Anzahl der Oberflächenplätze, die ein Teilchen der Spezies j belegt, angibt.

Die Geschwindigkeitskoeffizienten der Oberflächenreaktionen \( k_{fk} \) werden durch ein modifiziertes Arrheniusgesetz beschrieben:

\[
k_{fk} = A_k T^{\beta_k} \exp \left[ -\frac{E_{ak}}{RT} \right] \cdot f_k(\{\Theta_i\})
\]  

(3.7)

Hier stellt \( A_k \) den präexponentiellen Faktor dar, \( \beta_k \) den Temperaturrexponenten und \( E_{ak} \) die Aktivierungsentnergie der k-ten Reaktion dar. Mit dem zusätzlichen Term \( f_k(\{\Theta_i\}) \) wird berücksichtigt, dass Adsorbate eine Änderung des energetischen Zustands von Oberflächen bewirken können, was sich auf die Höhe der Aktivierungsentnergie einiger Reaktionen auswirkt. Darüber hinaus kann auch die
Adsorptionswahrscheinlichkeit durch Adsorbat-Wechselwirkungen beeinflusst werden, was mit einer Änderung des präexponentiellen Faktors verbunden ist. So wird zur Modellierung der Bedeckungsabhängigkeiten folgende funktionale Form gewählt:

\[
f_k(\{\Theta_i\}) = \prod_{i=1}^{N_s} \Theta_i^{\mu_{ik}} \exp \left[ \frac{\epsilon_{ik} \Theta_i}{RT} \right]
\]

(3.8)

Die zusätzlichen Modellparameter \(\mu_{ik}\) und \(\epsilon_{ik}\) beschreiben jeweils die Veränderung der Reaktionsordnungen bezüglich Spezies \(i\) und die Bedeckungsabhängigkeit der Aktivierungsenergie. Dabei bezeichnet \(\epsilon_{ik}\) den Wert, um den sich die Aktivierungsenergie \(E_{ak}\) bei vollständiger Bedeckung der Oberfläche mit der Spezies \(i\) ändert.

Der Geschwindigkeitskoeffizient für die Rückreaktion wird entweder direkt in Form von Gleichung 3.7 angegeben oder aus der Gleichgewichtskonstanten berechnet. Die Gleichgewichtskonstante \(K_{ck}\) leitet sich aus der molaren freien Reaktionsenthalpie \(\Delta_R G^0_k\) ab [21]:

\[
K_{ck} = \exp \left[ \frac{\Delta_R G^0_k}{RT} \right] \cdot \left( \frac{p^0}{RT} \right)^\sum_{i=1}^{N_g} \nu_{ik} \cdot \prod_{i=N_g+1}^{N_s} \frac{\Gamma}{\sigma_i} ^\nu_{ik}
\]

(3.9)

Üblicherweise werden Adsorptionsprozesse mit Hilfe von Haftkoeffizienten \(S_i\) beschrieben. Im Wesentlichen geben sie die Wahrscheinlichkeit \((0 \leq S_i \leq 1)\) an, mit der ein Teilchen, das mit der Oberfläche kollidiert, adsorbiert wird. Haftkoeffizienten sind im Allgemeinen temperatur- und bedeckungsabhängig. Als Anfangshaftkoeffizient \(S_i^0\) bezeichnet man den Haftkoeffizienten bei vollständig unbedeckter Oberfläche. So kann eine lokale Adsorptionswahrscheinlichkeit folgendermaßen definiert werden:

\[
S_i^{\text{eff}} = S_i^0 \prod_{i=1}^{N_s} \Theta_j^{\nu_{jk} + \mu_{jk}}
\]

(3.10)

Aus der kinetischen Gastheorie ergibt sich nun folgender Ausdruck für die Reaktionsgeschwindigkeit \(\dot{s}_i\):

\[
\dot{s}_i = S_i^{\text{eff}} \sqrt{\frac{RT}{2\pi M_i}}c_i
\]

(3.11)
3. Theoretische Grundlagen der Modellierung

Gleichung 3.11 setzt eine Boltzmann-Verteilung der kinetischen Energie der Moleküle in Oberflächenähe voraus.

3.2.4. Elementarreaktionen

Unter einer Elementarreaktion versteht man eine Reaktion, die auf molekularer Ebene exakt so abläuft, wie sie durch die Reaktionsgleichung beschrieben wird, wobei sich jede tatsächlich ablaufende Reaktion in Elementarreaktionen unterteilen lässt.

Im Rahmen dieser Arbeit sollen die Platin katalysierte NO-Oxidation sowie die damit einhergehende oxidative Desaktivierung von Platin durch Elementarreaktionen dargestellt werden. Der Vorteil dieses Ansatzes liegt darin, dass die Parameter, die der hier zur Beschreibung der Reaktionskinetik verwendeten Arrhenius-Gleichung zugrunde liegen, für Elementarreaktionen physikalisch messbare Größen sind. Insbesondere gilt, dass die Reaktionsordnungen den stöchiometrischen Koeffizienten entsprechen:

\[ \tilde{\nu}_j' = \nu_j' \quad \text{und} \quad \tilde{\nu}_j'' = \nu_j'' \]  

(3.12)


3.3. Thermodynamische Konsistenz

Betrachtet man die folgende Reaktion

\[ \sum_i \nu_{jk} A_i \xrightarrow{k_{jk}} \sum_i \nu_{ik}'' A_i \]

(3.13)
3.3. Thermodynamische Konsistenz

so ist das Gleichgewicht vollständig durch die thermodynamischen Eigenschaften der beteiligten Spezies bestimmt \[ [19, 22]. \] Ausgedrückt in Form der Gleichgewichtskonstanten \( K_{pk} \) erfüllen die Aktivitäten \( a_i^{eq} \) im Gleichgewichtszustand folgende Gleichung:

\[
K_{pk} = \prod_i (a_i^{eq})^{\nu_{ik}} = \exp \left( -\frac{\Delta R G^0}{RT} \right) = \exp \left( -\frac{\Delta R H^0}{RT} \right) \cdot \exp \left( \frac{\Delta R S^0}{R} \right) \quad (3.14)
\]

Dabei ist \( \nu_{ik} = \nu'_{ik} - \nu''_{ik} \), \( R \) steht für die die Gaskonstante, \( T \) die Temperatur, \( \Delta R S^0 \) bezeichnet die Reaktionsentropie, \( \Delta R H^0 \) die Reaktionsenthalpie und \( \Delta R G^0 \) die freie Reaktionsenthalpie bei Normaldruck \( p^0 \). Für letztere gilt:

\[
\Delta R G^0 = \sum_i \nu_{ik} G_i^0(T) \quad (3.15)
\]

Betrachtet man ideale Gase, so kann man die Aktivitäten durch Partialdrücke \( a_i = \frac{p_i}{p^0} \) ersetzen, bei Oberflächenspezies entsprechen sie dem Oberflächenbedeckung \( a_i = \Theta_i \).

Sowohl die Temperaturabhängigkeit der Wärmekapazität als auch die Standardreaktionsenthalpie und -entropie können in Form von Polynomsansätzen mit den Koeffizienten \( b_{0,i}, \ldots, b_{6,i} \) dargestellt werden. Damit ergibt sich für die freie Enthalpie folgender Ausdruck:

\[
G_i^0(T) = b_{0,i} + b_{1,i}T + b_{2,i}T^2 + b_{3,i}T^3 + b_{4,i}T^4 + b_{5,i}T^5 + b_{6,i}T^6 \ln T \quad (3.16)
\]

Im chemischen Gleichgewicht laufen auf mikroskopischer Ebene Hin- und Rückreaktion mit gleicher Geschwindigkeit ab, makroskopisch ist somit kein Umsatz mehr zu beobachten. Zur korrekten Berechnung der Lage des Gleichgewichts müssen die Geschwindigkeitskoeffizienten der Hin- und Rückreaktion folgende Gleichung erfüllen:

\[
\frac{k_{fk}}{k_{rk}} = K_{pk} \cdot \prod (c_i^0)^{\nu_{ik}} \quad (3.17)
\]

\( c_i^0 \) ist dabei die Referenzkonzentration bei Normaldruck, d.h. \( c_i^0 = \frac{p_i^0}{RT} \) für Gase und \( c_i^0 = \frac{\Gamma_i}{\sigma_i} \) für Oberflächenspezies. Die Geschwindigkeitskoeffizienten sind durch einen Arrhenius-Ansatz definiert.
3. Theoretische Grundlagen der Modellierung

Ein Vergleich der thermodynamischen und kinetischen Definition der Gleichgewichtskonstanten in Gleichung 3.14 und 3.17 liefert ein Kriterium für die thermodynamische Konsistenz von Reaktionsmechanismen für die Einzelreaktionen.

\[
\frac{A_f}{A_r} \cdot \prod (c_i^0)^{-\nu_i} \cdot \exp \left[ -\frac{E_{af} - E_{ar}}{RT} \right] = \exp \left[ -\frac{\Delta_R H^0}{RT} \right] \cdot \exp \left[ \frac{\Delta_R S^0}{R} \right] \quad (3.18)
\]

Ein Koeffizientenvergleich liefert:

\[
\Delta_R H^0 = E_{af} - E_{ar} \quad (3.19)
\]

\[
\exp \left[ \frac{\Delta_R S^0}{R} \right] = \frac{A_f}{A_r} \cdot \prod (c_i^0)^{-\nu_{ik}} \quad (3.20)
\]


3.4. Modellierung von Wabenkatalysatoren

3.4.1. Vorgehensweise

In der vorliegenden Arbeit erfolgt die Modellierung des Wabenkörpers anhand eines repräsentativen Einzelkanals (siehe Abbildung 3.1). Diese Vorgehensweise ist dann gerechtfertigt, wenn keine radialen Konzentrations-, Geschwindigkeits- oder Temperaturgradienten am Eingang des Wabenkörpers vorliegen und am Wabenkörpermantel adiabatische Randbedingungen gelten [15]. Des Weiteren kann das Einzelkanalmodell auch für die Modellierung des gesamten Wabenkörpers unter Bedingungen, wie sie bei der Kaltstartphase oder variierenden Einströmbedingungen vorliegen, verwendet werden [23].
3.4.2. Modellierung reaktiver Strömungen


Navier-Stokes-Gleichungen


Für einen rotationssymmetrischen Kanal erhält man in Zylinderkoordinaten:

Massenerhaltung (Kontinuitätsgleichung)

\[
\frac{\partial(\rho u)}{\partial z} + \frac{1}{r} \frac{\partial(r \rho v)}{\partial r} = 0
\]  
(3.21)

Impulserhaltung in axialer Richtung

\[
\rho u \frac{\partial u}{\partial z} + \frac{1}{r} \rho v \frac{\partial(ru)}{\partial r} = - \frac{\partial p}{\partial z} + \frac{\partial}{\partial z} \left[ 4 \eta \frac{\partial u}{\partial z} - \frac{2}{3} \eta \frac{\partial(rv)}{\partial r} \right] + \frac{1}{r} \frac{\partial}{\partial r} \left[ \eta r \left( \frac{\partial v}{\partial z} + \frac{\partial u}{\partial r} \right) \right]
\]  
(3.22)

Impulserhaltung in radialer Richtung

\[
\rho u \frac{\partial v}{\partial z} + \frac{1}{r} \rho v \frac{\partial(rv)}{\partial r} = - \frac{\partial p}{\partial r} + \frac{\partial}{\partial z} \left[ \eta \left( \frac{\partial v}{\partial z} + \frac{\partial u}{\partial r} \right) \right] + \frac{\partial}{\partial r} \left[ - \frac{2}{3} \eta \frac{\partial u}{\partial z} + \frac{4}{3} \eta \frac{\partial(rv)}{\partial r} \right]
\]  
(3.23)
3. Theoretische Grundlagen der Modellierung

Energieerhaltung

\[
\rho u \frac{\partial h}{\partial z} + \frac{1}{r} \rho v \frac{\partial (r h_i)}{\partial r} = u \frac{\partial p}{\partial z} + v \frac{\partial p}{\partial r} - \frac{\partial}{\partial z} q_z - \frac{1}{r} \frac{\partial}{\partial r} (r q_r) \quad (3.24)
\]

Massenerhaltung der Spezies

\[
\rho u \frac{\partial Y_i}{\partial z} + \frac{1}{r} \rho v \frac{\partial (r Y_i)}{\partial r} = -\frac{\partial j_{i,z}}{\partial z} - \frac{1}{r} \frac{\partial (r j_{i,r})}{\partial r} + M_i \omega_i \quad (3.25)
\]

Die in den obigen Erhaltungsgleichungen verwendeten Symbole stehen für:

- \( r \): radiale Koordinate
- \( z \): axiale Koordinate
- \( \rho \): Dichte
- \( u \): axiale Geschwindigkeit
- \( v \): radiale Geschwindigkeit
- \( p \): Druck
- \( Y_i \): Massenbruch der Spezies \( i \)
- \( \omega_i \): Bildungsgeschwindigkeit der Spezies \( i \) in der Gasphase
- \( M_i \): molare Masse der Spezies \( i \)
- \( \eta \): Viskosität
- \( h \): spezifische Enthalpie
- \( q_i \): Wärstemstromdichte
- \( j_{i,r} \): Diffusionsstromdichte

Für die eindeutige Lösung des Differenzialgleichungssystems sind Randbedingungen notwendig. Bei chemisch reaktiven Strömungen sind sie u.a. durch die Kopplung von Oberflächenreaktionen mit den Vorgängen in der Gasphase gegeben. Da sich im stationären Zustand die Oberflächenbedeckungen nicht ändern, beeinflussen heterogene chemische Reaktionen makroskopisch gesehen nur die Gasphase. Dadurch ergeben sich folgende Randbedingungen an der Phasengrenze:

- der durch die Oberflächenreaktionen erzeugte Spezies-Massenfluss in die Gasphase entspricht dem diffusiven Massenfluss an der Oberfläche

\[
\dot{j}_{i,r} = -F_{\text{cat/geo}} M_i \dot{s}_i \quad (3.26)
\]
3.4. Modellierung von Wabenkatalysatoren

$F_{\text{cat/geo}}$ bezeichnet das Verhältnis der katalytischen zur geometrischen Oberfläche.

- für $r = r_0$ ist $u = 0$
- $T_W$ bezeichne die Wandtemperatur, $T$ die Temperatur der fluiden Phase: An der Kanalwand gilt $T = T_W$

Boundary-Layer-Approximation


$$Re_d \cdot Sc \gg 1$$

mit Reynolds-Zahl $Re_d = \frac{mu}{\eta}$ und Schmidt-Zahl $Sc = \frac{\eta}{\rho D_i}$.

Bei einem realen Abgaskatalysator mit einem Kanaldurchmesser von 1 mm liegen die axialen Strömungsgeschwindigkeiten im Bereich von 0,5 bis 25 m/s mit entsprechenden Reynoldszahlen $Re$ von 10 bis 300 [25]. Für die meisten Komponenten in Abgasmischungen kann eine Schmidt-Zahl $Sc$ von ungefähr eins angenommen werden [26], sodass hier die Vernachlässigung der axialen Diffusion gegenüber der Konvektion gerechtfertigt ist.


Massenerhaltung:

$$\frac{\partial (\rho u)}{\partial z} + \frac{1}{r} \frac{\partial (r \rho v)}{\partial r} = 0$$

(3.28)
3. Theoretische Grundlagen der Modellierung

**Axiale Impulserhaltung:**

\[
\rho u \frac{\partial u}{\partial z} + \rho v \frac{1}{r} \frac{\partial (r u)}{\partial r} = -\frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left( \eta r \frac{\partial u}{\partial r} \right) \quad (3.29)
\]

**Radiale Impulserhaltung:**

\[
0 = \frac{\partial p}{\partial r} \quad (3.30)
\]

**Spezies Massenerhaltung:**

\[
\rho u \frac{\partial Y_i}{\partial z} + \rho v \frac{1}{r} \frac{\partial (r Y_i)}{\partial r} = -\frac{1}{r} \frac{\partial}{\partial r} \left( r j_{i,r} \right) + \bar{M}_i \dot{\omega}_i \quad (3.31)
\]

**Energieerhaltung:**

\[
\rho u \frac{\partial h}{\partial z} + \frac{1}{r} \rho v \frac{\partial (r h)}{\partial r} = u \frac{\partial p}{\partial z} - \frac{1}{r} \frac{\partial}{\partial r} \left( r q_r \right) \quad (3.32)
\]

**Plug-Flow-Modell**

Eine weitergehende Vereinfachung der Boundary-Layer-Gleichungen erreicht man durch das Plug-Flow-Modell, welches seiner Bezeichnung entsprechend von einer eindimensionalen Pfropfenströmung im Kanal ausgeht. Die Eliminierung der radialen Auflösung erfolgt dabei über die Mitte lung von Werten über den Querschnitt. Somit eine schnelle radiale Durchmischung Voraussetzung für die Anwendung dieses einfachen Modells. Dies ist bei turbulenten Strömungen oder Strömungen mit kinetisch limitierten Oberflächenreaktionen gegeben. Nach Integration der Boundary-Layer-Gleichungen über den Kanalquerschnitt \(2\pi \int_0^{r_0} \cdot r \, dr\) und anschließender Division durch die Querschnittsfläche \(\pi r_0^2\) tritt für die Bilanzen ein gewöhnliches Gleichungssystem an die Stelle des parabolischen.

**Massenerhaltung:**

\[
\frac{d(\bar{m}_u)}{dz} = 0 \quad (3.33)
\]

**Impulserhaltung:**

\[
\frac{\rho u \, \bar{m}_u}{dz} = -\frac{dp}{dz} + \frac{16}{Re \cdot r_0} \rho u^2 \quad (3.34)
\]
3.4. Modellierung von Wabenkatalysatoren

Spezies Massenerhaltung:

\[
\frac{\rho u}{d} \frac{dY_i}{dz} = M_i \dot{\omega}_i + \frac{2}{r_0} F_{\text{cat/geo}} M_i \dot{s}_i
\]  \hspace{1cm} (3.35)

Energieerhaltung:

\[
\frac{\rho u}{d} \frac{d\bar{h}}{dz} = \bar{u} \frac{d\bar{p}}{dz} + \frac{2k_w}{r_0} (T_W - T)
\]  \hspace{1cm} (3.36)

Hier wird der Wärmeaustausch mit der Wand durch einen empirischen Wärmeübergangskoeffizienten \(k_w\) beschrieben, der von der Geometrie und der Strömungsgeschwindigkeit abhängt.

Da die Konzentrationen der Spezies aufgrund katalytischer Reaktionen an der Kanalwand nicht als gradientenfrei angesehen werden können, wird zur Berücksichtigung der Massentransport-Limitierung eine weitere empirische Größe, die Sherwoodzahl \(Sh_i\), eingeführt.

\[
Sh_i = \beta_i \frac{d}{D_i} \quad \text{mit} \quad \beta_i = \frac{\dot{s}_i M_i}{\rho_{\text{surf}} Y_{\text{surf}} - \rho Y_i}
\]  \hspace{1cm} (3.37)

In den obigen Gleichungen sind \(\beta_i\) der Stoffübergangskoeffizient, \(d\) der Kanaldurchmesser und \(D_i\) der Diffusionskoeffizient. Weiterhin bezeichnen \(\rho_{\text{surf}}\) und \(Y_{\text{surf}}\) die Dichte bzw. den Massenbruch der Spezies \(i\) an der Oberfläche, während \(\rho\) und \(Y_i\) die entsprechenden Größen in der fluiden Phase im Reaktor darstellen.

**Rührkesselkaskade**

Die Rührkesselkaskade stellt aus numerischer Sicht eine Diskretisierung des Strömungsrohrreaktors dar. In diesem Modell wird das Verhalten eines Strömungsrohrreaktors durch eine ausreichend große Anzahl in Serie geschalteter ideal durchmischter Rührkesselreaktoren wiedergegeben, wobei die Bodensteinzahl \(Bo\) des darzustellenden Systems ein Kriterium für die Anzahl der zu verwendenden Rührkesselreaktoren ist. Für große Bodensteinzahlen gilt folgende Beziehung für die Anzahl \(N\) an hintereinander geschalteten Rührkesselreaktoren:

\[
\frac{1}{N} = \frac{2}{Bo} + \frac{8}{Bo^2}
\]  \hspace{1cm} (3.38)
3. Theoretische Grundlagen der Modellierung

Die Bodensteinzahl ist ein Maß für das Verhältnis des konvektiven Stroms zum dispersiven Strom:

\[ Bo = \frac{uL}{D_{ax}} \quad (3.39) \]

Dabei bezeichnet \( L \) die Länge des Reaktors und \( D_{ax} \) steht für den axialen Dispersionskoeffizienten.

In einer Rührkesselkaskade geben die Ausgangsbedingungen des \( n \)-ten Rührkesselreaktor die Eingangsbedingungen des \((n + 1)\)-ten Rührkesselreaktors vor.

Stoffbilanz des \((n + 1)\)-ten Rührkesselreaktors:

\[ \frac{dn_i}{dt} = \dot{n}_{i,n} - \dot{n}_{i,(n+1)} + V\dot{\omega}_i + A_{cat}\dot{s}_i \quad (3.40) \]

Energiebilanz des \((n + 1)\)-ten Rührkesselreaktors:

\[ \frac{dh}{dt} = h(T_n) - h(T_{(n+1)}) + k_w A_W (T_W - T) \quad (3.41) \]

\( A_W \) gibt die Fläche der Kanalwand an.

### 3.5. Programmpaket DETCHEM

#### 3.5.1. Allgemeine Programmstruktur

Im Rahmen dieser Arbeit werden numerische Simulationen reaktiver Strömungen mit dem in FORTRAN entwickelten Softwarepaket DETCHEM (Detailed Chemistry), in welchem die in Abschnitt 3.4 beschriebenen Modelle implementiert sind, durchgeführt [27].

3.5.2. DETCHEM$^\text{CSTR-CASCADE}$

Für die Modellierung des instationären Verhaltens des Katalysators bei der NO-Oxidation im Bezug auf die Platinoxidbildung wird das Programm DETCHEM$^\text{CSTR-CASCADE}$ verwendet, das auf Grundlage des Modells der Rührkesselskaskade (Continuously Stirred Tank Reactor-Cascade) vollständig transiente Simulationen ermöglicht. Das Programm DETCHEM$^\text{RESERVOIR}$, mit welchem basierend auf der detaillierteren Beschreibung von Strömungen durch die in DETCHEM$^\text{CHANNEL}$ implementierten 2D Boundary Layer-Gleichungen zeithängige Versuche beschrieben werden können, kann in diesem Fall nicht eingesetzt werden. Um die benötigten Differentialgleichungen dieses detaillierten Modells zu lösen, wird nämlich angenommen, dass die Zeitskala der Veränderungen im Katalysator gegenüber der Verweilzeit des Abgases im Reaktor groß ist, sodass sich die Zeitskalen separieren lassen. Dies ist im Fall der mit der NO-Oxidation einhergehenden oxidativen Katalysatordeaktivierung jedoch nicht gegeben, sodass das Problem vollständig transient gelöst werden muss.
4. Stand der Forschung zur NO-Oxidation

4.1. Allgemeines

Aufgrund der großen Bedeutung der heterogen katalysierten NO-Oxidation für die chemische Technik existieren zahlreiche experimentelle [7, 8, 12, 28–37] und theoretische [34, 38, 39] Untersuchungen zu diesem Forschungsgebiet. Bourges et al. [29] untersuchten die katalytische Aktivität verschiedener Edelmetalle auf einem aus $\gamma$-Al$_2$O$_3$ bestehenden Washcoat, wobei sich herausstellte, dass Platin die höchste Aktivität für die NO-Oxidationsreaktion aufweist. Der Einfluss des Trägermaterials sowie der Größe der Platinpartikel auf die NO-Oxidation wurde von Xue et al. [28] näher unter Betracht gezogen. Dabei stellten sie wider den Erwartungen fest, dass die Umsatzgeschwindigkeit mit abnehmender Dispersion des Edelmetalls und somit mit zunehmender Partikelgröße steigt, die Selektivität aber unverändert bleibt. Für die katalytische Aktivität von Platin in Abhängigkeit des Trägermaterials wurde folgende Reihenfolge gefunden: Pt/SiO$_2$ > Pt/Al$_2$O$_3$ > Pt/ZrO$_2$. Schmitz et al. [33] beobachteten, dass die Abhängigkeit der NO-Umsatzgeschwindigkeit von der Partikelgröße und somit die Struktursensitivität der NO-Oxidation beim Katalysatorsystem Pt/Al$_2$O$_3$ ausgeprägter ist als bei Pt/SiO$_2$. So wurde der relative Einfluss der untersuchten Parameter auf die NO-Oxidation folgendermaßen zusammengefasst: Trägermaterial > Vorbehandlung > Beladung > Calcinationstemperatur > Precursorsalz.

Bei niedrigen Temperaturen unterliegt die NO-Oxidationsreaktion der kinetischen Kontrolle, wohingegen bei hohen Temperaturen die Thermodynamik maßgebend ist [40]. Dabei verschiebt sich das thermodynamische Gleichgewicht der Reaktion aufgrund der niedrigen Reaktionsenthalpie schon bei wenigen hundert Grad Celsius zu Gunsten der Edukte [34].
4.2. Mechanismus

4. Stand der Forschung zur NO-Oxidation

Abhängigkeit von der Sauerstoffbedeckung auf einer Pt(111)-Oberfläche [35]. Dabei stellte sich heraus, dass bei Sauerstoffbedeckungsgraden bis zu 0,28 ML innerhalb des untersuchten Temperaturbereichs von 150 bis 500 K keine NO-Oxidation stattfindet. Weiterhin beobachteten sie, dass die NO$_2$-Bildung bei einer Sauerstoffbedeckung von 0,4 ML ab 300 K einsetzt, was sehr gut mit den Berechnungen von Ovesson et al. übereinstimmt, die das Einsetzen der NO-Oxidation bei Raumtemperatur für 0,45 ML Bedeckung voraussagten. Diese Arbeiten legen einen Verlauf der NO-Oxidation nach dem Langmuir-Hinshelwood-Mechanismus nahe.

4.3. Desaktivierung von Platin

Während stationärer NO-Oxidationsexperimente mit Platinkatalysatoren wurde von vielen Autoren ein langsamer Rückgang des Umsatzes mit der Zeit festgestellt, der auf die Desaktivierung von Platin durch das Produkt NO$_2$ zurückzuführen ist [7, 8, 12, 32, 41, 42, 50-52]. Unter den Bedingungen der Platin katalysierten NO-Oxidation wurde sowohl eine Oxidation von Platin durch molekularen Sauerstoff als auch eine Oxidation durch NO$_2$ beobachtet, wobei das Ausmaß der Desaktivierung des Katalysators durch Stickstoffdioxid jenem durch Sauerstoff wesentlich übersteigt. Dieses Phänomen ist kinetisch bedingt. So erhöht sich der NO-Umsatz mit steigender O$_2$-Konzentration, sinkt aber bei tiefen Temperaturen mit steigender NO-Konzentration, da eine Erhöhung der NO-Konzentration gleichzeitig zu einer größeren Menge NO$_2$ führt, welches in der Lage ist, eine schnelle Platinoxidation herbeizuführen [8]. Eine Behandlung des Katalysators mit NO$_2$ bewirkt nicht nur eine Erniedrigung der katalytischen Aktivität gegenüber der NO-Oxidation, sondern desaktiviert das Edelmetall auch gegenüber der NO$_2$-Dissoziation [12].


Die Katalysatorsysteme Pt/SiO$_2$, Pt/Al$_2$O$_3$ und Pt/ZrO$_2$ erfahren alle eine Desak-
4.3. Desaktivierung von Platin

tivierung durch NO₂. Allerdings ist die Platin-Oxidation insofern vom Trägermaterial abhängig, dass saure Oxide die Oxidation des Edelmetalls erschweren, während die Anwesenheit basischer Materialien sie begünstigen. So beobachteten Fridell et al. [50] für das System Pt/BaO/γ-AL₂O₃ eine deutlichere Abnahme der Katalysatoraktivität im Laufe der NO-Oxidation als für ein ähnliches System ohne den basischen NOₓ-Speicher Bariumoxid. Dies kann dadurch erklärt werden, dass saure Träger aufgrund ihrer Elektrophilie die Elektronendichte des 5d-Bandes von Platin vermindern, was die Wahrscheinlichkeit einer Oxidation des Edelmetalls, bei der Platin gegenüber Sauerstoff als Elektronendonator fungiert, herabsetzt [50]. Weiterhin ergaben experimentelle Untersuchungen, dass eine Abhängigkeit des Oxidationsgrades von der Partikelgröße besteht, wobei Ausmaß und Geschwindigkeit der oxidativen Desaktivierung von Platin für kleinere Partikel größer ist als für Partikel mit einem Durchmesser von über 2 nm [11, 41, 53-55], was eine Erklärung für die u.a. von Xue et al. [28] beobachtete unerwartete Abhängigkeit des NO-Umsatzes von der Dispersion sein könnte (siehe Abschnitt 4.1). Die Ursache hierfür könnte zum einen in dem größeren Oberfläche/Volumen-Verhältnis kleinerer Partikel und zum anderen in den unterschiedlichen Oberflächenstrukturen verschiedener Platinpartikel liegen. Da die Oberflächen großer Platinpartikel eine hohe Konzentration an Atomen mit hoher Koordinationszahl aufweisen, ist ihre Oxidation erschwert. So bilden beispielsweise Platinatome einer Pt(110)-Oberfläche stärkere Platin-Sauerstoff-Bindungen als die einer Pt(111)-Oberfläche, was auf ihre geringere Koordinationszahl zurückzuführen ist [56].

4. Stand der Forschung zur NO-Oxidation

Temperaturen fest, die sich in einer zweiten Hysteresekurve, welche sich an die erste anschließt und etwas weniger ausgeprägt ist, ausdrückt. Dabei hängt das Ausmaß dieser zweiten Hysterese sowohl vom Temperaturbereich und der Temperaturrampe der Light-Off-/Out Versuche als auch von der NO-Konzentration im NO/O₂-Eduktgemisch ab. So begünstigen tiefe Temperaturen und eine hohe NO-Konzentration die Reduktion des im Laufe des ersten Versuchs gebildeten Platinoxids, was zu einer nahezu vollständigen Regenerierung des Katalysators und somit zu einer der ersten Hysteresekurve ähnlichen zweiten Kurve führt. Werden die Light-Off-/Out Versuche ausschließlich bei hohen Temperaturen (250-350°C) durchgeführt, so findet keine Wiederherstellung der katalytischen Aktivität statt, was sich darin äußert, dass der NO-Umsatz auf dem Ast der Aktivität des oxidierten Platins verbleibt [57]. Außerdem führten Hauptmann et al. stationäre Messungen durch, bei denen die NO-Oxidation unter isothermen Bedingungen bei definierten Katalysatortemperaturen im Temperaturbereich der Light-Off-/Out Versuche (80-350°C) untersucht wurde, wobei nach Erreichen der höchsten Temperatur in analoger Vorgehensweise wieder abgekühlt wurde. Dies führt zu einem Hysterese- effekt, der wesentlich geringer ausgeprägt ist als der Effekt, der bei den transienten Versuchen auftrat. Dadurch wird deutlich, dass die Einstellung des Gleichgewichts zwischen den Desaktivierungsreaktionen und den Reaktionen, die für die Regeneration des Katalysators verantwortlich sind, sehr langsam erfolgt.

4.4. Kinetische Modelle

Obwohl die in Abschnitt 4.3 beschriebene oxidative Desaktivierung von Platin während der NO-Oxidation bereits seit einigen Jahren bekannt ist, wurde bis zum heutigen Tag kein Reaktionsmechanismus veröffentlicht, der dieses Phänomen mit Hilfe von Elementarreaktionen beschreibt. In den bisher vorhandenen elementarkinetischen Mechanismen für die NO-Oxidation wird die Platinoxidation in Anwesenheit von NO₂ entweder vernachlässigt [17,30,31,52] oder nur anhand globalkinetischer Ansätze berücksichtigt [36,42]. Durch Ergänzung eines elementarkinetischen Mechanismus mit den folgenden von Després et al. [8] vorgeschlagenen globalen Reaktionen zur Beschreibung der Desaktivierung von Platin, ist es Hauptmann et al. vor kurzem gelungen, die oben erläuterte inverse Hysterese des NO-Umsatzes zu
4.4. Kinetische Modelle

simulieren [36]:

\[
\begin{align*}
\text{NO}_2(\text{Pt}) + (\text{Pt}) & \rightarrow \text{NO}(\text{Pt}) + (\text{PtOx}) \\
(\text{PtOx}) + \text{NO} & \rightarrow \text{NO}_2(\text{Pt})
\end{align*}
\]

5. Experimentelle Untersuchungen zur katalytischen Aktivität

Die Entwicklung und Evaluierung des Reaktionsmechanismus der Platin katalysierten NO-Oxidation basiert auf experimentellen Daten stationärer Versuche sowie Light-Off/-Out Messungen. Als Grundlage hierfür dienen sowohl experimentelle Untersuchungen im Flachbettreaktor des Instituts für Chemische Verfahrenstechnik (ICVT) der Universität Stuttgart, die im Rahmen einer Forschungskooperation durchgeführt worden sind, als auch Messungen in einem Integralreaktor, die Wulf Hauptmann im Laufe seiner Promotionsarbeit durchgeführt hat [42].

5.1. Messungen im Flachbettreaktor

5.1.1. Versuchsaufbau

Die Messanlage setzt sich aus drei Hauptbestandteilen zusammen:

1. Gasdosierung
2. isothermer Flachbettreaktor
3. Analyseeinheit

5.1. Messungen im Flachbettreaktor

Betriebszustand des Motors besteht, sodass während des Messvorgangs definierte Gaskonzentrationen zur Verfügung stehen. Die Steuerung der Gasdosierung wird über Ventile sowie Massendurchflussregler vorgenommen.

Der Flachbettreaktor, der vom ICVT der Universität Stuttgart eigens zur experimentellen Untersuchung monolithischer Katalysatoren entwickelt wurde, stellt das Kernstück der Laboranlage dar. Er besteht im Wesentlichen aus zwei beheizbaren Edelstahlhalbschalen, zwischen denen mehrere gleich große Scheibchen eines zu untersuchenden Katalysators untergebracht werden können. Die Maße eines solchen Scheibchens sind Abbildung 5.1 zu entnehmen.

![Abbildung 5.1.: Maße eines 400 cpsi-Monolithscheibchens (Frontansicht) [58]](image)

Ein inertes Scheibchen im Zulauf des Reaktors dient als Aufheizstrecke für das einströmende Gas sowie zur Strömungsausbildung. Da die für kinetische Messungen verwendeten Scheibchen aus kommerziellen Wabenkatalysatoren stammen, kann man davon ausgehen, dass realistische Bedingungen herrschen und die Transportvorgänge im Katalysator somit dem Anwendungsfall entsprechen. Außerdem können die Reaktionsbedingungen als isotherm betrachtet werden, da aufgrund der großen Kontaktfläche zwischen den Katalysatorscheibchen und den Graphitdichtungen des Reaktors ein guter Wärmeübergang gewährleistet ist. Zwischen den fünf katalytisch aktiven Scheibchen, die auf das Inertscheibchen folgen, befinden sich seitliche Gasabzüge, was eine Analyse der Gaszusammensetzung nach jedem Scheibchen und somit die Bestimmung ortsabhängiger Konzentrationsprofile für den Reaktor ermöglicht.
Für die Analyse des Austrittgases dient ein online angeschlossenes Gerät der Firma MS4, das zwei unterschiedlich ionisierende Massenspektrometer (Airsense Compact der Firma V&F sowie QMS 200 der Firma Pfeiffer) kombiniert. Dies ermöglicht die Bereitstellung einer sanften (CI, chemische Ionisierung) und einer harten Ionisierung (EI, Elektronenstoßionisierung) zugleich. Die Elektronenstoßionisierung ist für die Detektion schwer ionisierbarer Moleküle wie N₂, H₂ und CO₂ nötig, während die chemische Ionisierung für die Analyse aller anderen im Abgas vorkommenden Gase geeignet ist. Da die chemische Ionisierung über die Beteiligung eines Reaktandgases (Quecksilber, Xenon, Krypton) erfolgt, wird weniger Energie benötigt, was mit einer relativ geringen Anzahl an Fragmenten in CI-Spektren verbunden ist. Beide Geräte sind Quadrupol-Massenspektrometer, wobei Quadrupol-Massenfilter die aktuell am häufigsten in Massenspektrometern eingesetzten Analysatoren darstellen. Mit dem vorliegenden Gerät ist somit eine zeitlich hoch aufgelöste, parallele Erfassung zahlreicher Gaskomponenten möglich.
5.1. Messungen im Flachbettreaktor

5.1.2. Light-Off/-Out Messungen

Die transienten Light-Off/-Out Messungen im Flachbettreaktor wurden an einem vorkonditionierten Pt/Al₂O₃-Dieseloxidationskatalysator mit Cordierit-Träger durchgeführt, der eine Platinbeladung von 120 g ft⁻³ (DOC 120) besitzt. Um die NO-Oxidation unabhängig von den Einflüssen der zahlreichen im Autoabgas vorhandenen Gase zu untersuchen, wurden für die Experimente nur Gasmischungen aus NO, O₂, NO₂ und CO₂ in Konzentrationen verwendet, die die reale Situation im mageren Dieselabgas widerspiegeln, wobei Stickstoff als Inertgas diente. Auch bei der Wahl der Raumgeschwindigkeit von 40000 h⁻¹ orientierte man sich an realitätsnahen Bedingungen.

Außerdem wurde der Ofen für die Light-Off/-Out Messungen mit einer Temperaturrampe von 5 K min⁻¹ aufgeheizt und mit derselben Vorgehensweise abgekühlt, wobei sich im Katalysator Temperaturen zwischen 110 und 360 K einstellten. Eine Übersicht der Versuchsbedingungen sowie die Gaszusammensetzung sind in Tabelle 5.1 angegeben.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO [vol. ppm]</td>
<td>500</td>
</tr>
<tr>
<td>NO₂ [vol. ppm]</td>
<td>0</td>
</tr>
<tr>
<td>O₂ [vol. %]</td>
<td>12</td>
</tr>
<tr>
<td>CO [vol. %]</td>
<td>7</td>
</tr>
<tr>
<td>N₂</td>
<td>Rest</td>
</tr>
</tbody>
</table>

Raumgeschwindigkeit [h⁻¹] 40000
Katalysatortemperatur [°C] 110-360
Temperaturrampe beim Aufheizen [K min⁻¹] 5
Temperaturrampe beim Abkühlen [K min⁻¹] -5

Tabelle 5.1.: Versuchsbedingungen für die Light-Off/-Out Messungen im Flachbettreaktor

5.1.3. Stationäre Messungen

Die stationären Messungen dienen zur Bestimmung der Kinetik für die Abnahme der katalytischen Aktivität aufgrund von Platinoxidbildung. Dafür wurde derselbe
Katalysator unter ähnlichen Versuchsbedingungen verwendet wie für die Light-Off/-Out Messungen. Zusätzlich setzte man einen ähnlichen Katalysator mit geringerer Platinbeladung (DOC 20), nämlich $20 \frac{g}{ft^3}$, ein. Die Experimente wurden für zwei unterschiedliche NO- und NO$_2$-Konzentrationen isotherm bei ausgewählten Temperaturen zwischen 150 und 450°C in Schritten von 25°C durchgeführt. Die entsprechenden Versuchsbedingungen sind Tabelle 5.2 zu entnehmen.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO [vol. ppm]</td>
<td>205</td>
<td>410</td>
</tr>
<tr>
<td>NO$_2$ [vol. ppm]</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>O$_2$ [vol. %]</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>CO [vol. %]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>N$_2$</td>
<td>Rest</td>
<td>Rest</td>
</tr>
<tr>
<td>Raumgeschwindigkeit $\frac{m}{h}$</td>
<td>40000</td>
<td>40000</td>
</tr>
<tr>
<td>Temperaturbereich °C</td>
<td>150-450</td>
<td>150-450</td>
</tr>
<tr>
<td>Versuchsduauer [min]</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Tabelle 5.2.: Versuchsbedingungen für die stationären Messungen im Flachbettreaktor

5.2. Messungen im Integralreaktor

5.2.1. Versuchsaufbau

5.2. Katalysator

Für alle Messungen im Integralreaktor wurde ein werksseitig vorkonditionierter Pt/Al₂O₃-Katalysator der Firma Umicore AG & Co. KG eingesetzt, der eine Platinbeladung von 80 \( \frac{g}{m³} \) aufweist. In der entsprechenden Literatur wurde eine Dispersion von 5% publiziert. Der Cordierit-Träger besitzt eine Zelldichte von 400 cpsi und eine Wandstärke von 1,09·10⁻⁶ m. Der für die experimentellen Untersuchungen verwendete Bohrkern ist 7,62·10⁻² m lang und hat einen Radius von 1,27·10⁻² m.

5.2.3. Light-Off/-Out Messungen

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO [vol. ppm]</td>
<td>430</td>
</tr>
<tr>
<td>O₂ [vol. %]</td>
<td>6</td>
</tr>
<tr>
<td>N₂</td>
<td>Rest</td>
</tr>
</tbody>
</table>

| Raumgeschwindigkeit \([ \frac{1}{h} ]\) | 25000 |
| Katalysatortemperatur \([°C]\)          | 80-360 |
| Temperaturrampe beim Aufheizen \([\frac{K}{min}]\) | 5     |
| Temperaturrampe beim Abkühlen \([\frac{K}{min}]\) | -5    |

Tabelle 5.3.: Versuchsbedingungen für die Light-Off/-Out Messungen im Rohrereaktor

Light-Off/-Out Experimente dienen zur Untersuchung des dynamischen Verhaltens des Katalysators. Vor jeder Messung wurde der Katalysator für eine Stunde bei 380°C reduktiv mit 3 vol. % H₂ in N₂ vorbehandelt. Anschließend wurde die benötigte Versuchstemperatur im Stickstoff-Strom eingestellt. Zur Untersuchung der NO-Oxidation wurde eine Gasmischung aus 430 ppm NO und 6 % O₂ in Stickstoffatmosphäre eingesetzt. Für die Light-Off/-Out Messungen wurde der Ofen mit einer Temperaturrampe von 5 \( \frac{K}{min} \), bei konstant bleibender Gaszusammensetzung von 80°C auf 460°C aufgeheizt und mit derselben Rate wieder abgekühlt, wobei der Katalysator Temperaturen zwischen 80 und 360°C erreichte. Die zweite Light-Off/-Out Messung wurde ohne dazwischengeschaltete Vorbehandlung direkt an die erste angeschlossen. Die für die Untersuchung der katalytischen Aktivität
5. Experimentelle Untersuchungen zur katalytischen Aktivität

verwendete Raumgeschwindigkeit betrug 25000 $\frac{1}{h}$. Tabelle 5.3 stellt eine Übersicht der Versuchsbedingungen dar.

5.2.4. Stationäre Messungen

Für die stationären Messungen gilt dieselbe reduktive Vorbehandlung wie für die Light-Off/-Out Versuche. Auch die Gaszusammensetzung und die Raumgeschwindigkeit sind identisch. Zur Untersuchung der Kinetik der Selbstinhibierung von NO$_2$ wurden NO-Oxidationsexperimente unter isothermen Bedingungen bei ausgewählten Temperaturen über einen Zeitraum von 14 Stunden durchgeführt, wobei Details Tabelle 5.4 zu entnehmen sind.

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO [vol. ppm]</td>
<td>430</td>
</tr>
<tr>
<td>O$_2$ [vol. %]</td>
<td>6</td>
</tr>
<tr>
<td>N$_2$</td>
<td>Rest</td>
</tr>
<tr>
<td>Raumgeschwindigkeit $[\frac{1}{h}]$</td>
<td>25000</td>
</tr>
<tr>
<td>Temperatur $[^\circ C]$</td>
<td>169, 210, 248</td>
</tr>
<tr>
<td>Versuchsduar [min]</td>
<td>840</td>
</tr>
</tbody>
</table>

Tabelle 5.4.: Versuchsbedingungen für die stationären Messungen im Rohrreaktor
6. Mechanismusentwicklung

6.1. Allgemeines

6.1.1. Vorgehensweise


Wie im Flussdiagramm zu erkennen, kann zur Erlangung eines Grundverständnisses für das Reaktionssystem auf Informationen zurückgegriffen werden, die durch verschiedene Ansätze gewonnen werden.

Experimental Surface Science Für die experimentelle Aufklärung elementarer chemischer Vorgänge in der heterogenen Katalyse eignen sich Oberflächenuntersuchungsmethoden, die Informationen über Struktur und chemische Zusammensetzung von Festkörpern bereitstellen sowie eine nähere Betrachtung von Adsorbaten erlauben. Die Methoden zur Strukturbestimmung lassen sich in Beugungsmethoden (LEED, (S)XRD, Beugung thermischer Heliumatome), Streuungsmethoden (Ionenstreuung) und abbildende Verfahren (FIM, TEM, STM, AFM) unterteilen. Auch die chemische Zusammensetzung von Oberflächen kann durch eine große Anzahl unterschiedlicher Methoden wie XPS, AES, ISS, SIMS und AAS ermittelt werden. Mit IR-spektroskopischen Methoden (Transmissions IR-Spektroskopie, RAIRS, IRAS) sowie SFG, HREELS und DRIFTS können Adsorbate untersucht werden. Außerdem kann die Bestimmung von Haftkoeffizienten für Adsorptionsreaktionen über das Molekularstrahlverfahren erfolgen, während thermische Verfahren wie TPD und TDS kinetische Untersuchungen von Desorptionsprozessen ermöglichen.
Theorie

Eine weitere Grundlage für die Entwicklung von Reaktionsmechanismen bilden theoretische Methoden. So lassen sich zum einen thermodynamische Daten mit Hilfe der statistischen Mechanik ermitteln, zum anderen dient die Theorie des Überzustandes zur Bestimmung von Geschwindigkeitskonstanten sowie zur Abschätzung präexponentieller Faktoren [59]. Außerdem können Aktivierungsentfernig einzelner Reaktionen auf Basis der UBI-QEP-Theorie (Unity Bond Index-Quadratic Exponential Potential) berechnet werden, wobei darauf hingewiesen werden muss, dass die Genauigkeit der Ergebnisse aufgrund der Annahme von sphärischen Wechselwirkungen stark eingeschränkt ist [60]. Darüber hinaus werden zur Aufklärung des Ablaufs von Oberflächenreaktionen häufig DFT-Rechnungen (Density Functional Theory) angewendet, die sich gegenüber ab initio-Rechnungen, welche auf der numerischen Lösung der Schrödinger-Gleichung basieren, durch einen geringeren Rechenaufwand auszeichnen. Jedoch führt die GGA-Methode in Ver-
binding with the PW91-Functional (Perdew-Wang Generalized Gradient Approximation), which is commonly used for calculations of surface reactions to systematically overestimate the bonding energies, so that the energetics cannot be quantitatively evaluated [34, 61–64].

**Analogies** For the development of mechanisms of heterogeneous reaction systems, analogies to the gas phase, for example in quantum chemistry during cluster calculations, can be useful. Similarly, one can start from existing reaction mechanisms for the specific system. From these acquired insights, a first model concept is developed, with which a preliminary reaction mechanism can be determined. It should be noted that this contains all elementary reactions that could occur and all potential reaction pathways are therefore present in the established mechanism. In addition, it should be noted that the used kinetic parameters must be realistic, which can be estimated through theoretical calculations and experimental observations. When simulating laboratory reactors, it is necessary that the used model is capable of describing the reactive flows in the respective reactors physically and chemically correctly.

The decisive step in the development of reaction mechanisms is the comparison of model and experiment. If the proposed mechanism is real, the number of experiments to be described is as large as possible, so it can be assumed that the elementary reactions occurring in the established reaction mechanism and the corresponding kinetic parameters to some extent reflect the reality. Should the simulations, however, lead to a good agreement with the experimental results, a revision of the mechanism is unavoidable.

### 6.1.2. Druck- und Materiallücke

Insights, which are derived through the methods described in the preceding section to elucidate elementary processes on catalytically active surfaces, cannot be directly translated to heterogeneous chemical reactions in reality. So are the experimentally obtained methods for the investigation of surfaces.

49
6. Mechanismusentwicklung

UHV-Bedingungen erforderlich, während im technischen Bereich normalerweise mindestens Atmosphärendruck vorherrscht (Abbildung 6.2). Außerdem beruhen die Informationen aus der Oberflächenforschung auf Beobachtungen chemischer und physikalischer Vorgänge an Einkristallen, die eine wohldefinierte Oberflächenstruktur besitzen, während Katalysatoren, die in der Verfahrenstechnik eingesetzt werden, eine hohe strukturelle Komplexität aufweisen. Infolge dessen ergibt sich eine im Vergleich zu der unter den Bedingungen der Oberflächenuntersuchungen veränderte Kinetik und Dynamik des Systems unter den realen Bedingungen der heterogenen Katalyse, die eine lineare Extrapolation der Erkenntnisse aus der Oberflächenphysik in der Regel unmöglich machen. Darüber hinaus hängen sowohl die thermodynamische Stabilität einzelner Spezies als auch Transporteigenschaften stark vom vorherrschenden Druck ab.

Abbildung 6.2.: Veranschaulichung der Druck- und Materiallücke zwischen Oberflächenforschung und realistischen Bedingungen der technischen heterogenen Katalyse

Obwohl bereits Ansätze zur Schließung der Druck- und Materiallücke vorhanden sind und die Diskrepanzen im Druck aufgrund großer Fortschritte in den letzten
6.2. Elementarkinetik der NO-Oxidation auf Platin

Jahren inzwischen mit theoretischen Methoden überbrückbar sind, bleibt sie im Bereich der heterogenen Katalyse weiterhin eine Herausforderung für Forschung und Entwicklung, da noch keine atomar auflösende in-situ-Mikroskopie existiert, die eine direkte Investigation aktiver Zentren auf komplexem Material ermöglicht [65, 66].

6.2. Elementarkinetik der NO-Oxidation auf Platin

6.2.1. Allgemeines

In der vorliegenden Arbeit wird bei der Aufstellung der Elementarreaktionen für die Platin katalysierte NO-Oxidation vom Langmuir-Hinshelwood-Mechanismus ausgegangen, da dieser sich im Vergleich zum ebenfalls häufig in elementarkinetischen Modellen eingesetzten Eley-Rideal-Mechanismus als realistischer erwiesen hat (siehe Abschnitt 4.2).

Bei experimentellen Untersuchungen der NO-Oxidation auf Pt/Al₂O₃-Katalysatoren konnte keine N₂O-Bildung beobachtet werden [37, 42]. Auch ist die Entstehung von NO₃ aufgrund seiner Instabilität sowohl in der Gasphase als auch auf Platin nicht zu erwarten [45]. Außerdem erfolgt die NO-Adsorption auf perfekten Pt(111)-Oberflächen ausschließlich molekular, wobei sich kleine Mengen dissoziierten Stickstoffmonoxids, die in der Regel bei experimentellen Untersuchungen auftreten, auf Dissoziationsvorgänge an Defektstellen beschränken [35, 67–69] und keinen wesentlichen Einfluss auf das Adsorptionsgleichgewicht ausüben [70]. Da die Platinpartikel in Autoabgaskatalysatoren üblicherweise einen Durchmesser von über 10 nm besitzen, kann man davon ausgehen, dass sie ein ähnliches Verhalten wie Pt(111)-Einkristalle aufweisen [11, 12]. Darüber hinaus wird der Anteil an dissoziiertem NO durch coadsorbierte Sauerstoffatome weiter verringert, sodass die Vernachlässigung der NO-Dissoziation aufgrund der permanent hohen Sauerstoffbedeckung der Edelmetalloberfläche während der NO-Oxidation gerechtfertigt ist [17, 47, 68, 71].

Somit enthält der elementarkinetische Mechanismus für die NO-Oxidation, der im Rahmen der vorliegenden Arbeit entwickelt wurde, folgende Reaktionsschritte:
6. Mechanismusentwicklung

- dissoziative Adsorption und assoziative Desorption von Sauerstoff
- molekulare NO-Adsorption und -Desorption
- molekulare NO₂-Adsorption und -Desorption
- NO-Oxidation nach dem Langmuir-Hinshelwood-Mechanismus
- NO₂-Dissoziation
- Katalysatordesaktivierung durch Platinoxidbildung
- Katalysatorreaktivierung

Obwohl der in dieser Arbeit für die Modellierung verwendete Mean-Field-Ansatz nicht zwischen verschiedenen Adsorbatplätzen unterschiedet, sind exakte Informationen zur Adsorption einzelner Spezies trotzdem essentiell, da aufgrund der Abhängigkeit der Adsorptionswärme von der Natur des Adsorptionsplatzes nur auf diese Weise realistische kinetische Parameter für den aufzustellenden Reaktionsmechanismus gewonnen werden können.

6.2.2. Sorptionseigenschaften von NO

In der Erforschung der NO-Adsorption auf Pt(111)-Oberflächen wurde lange Zeit die falsche Vorstellung einer linear atop-gebundenen und einer verbrückten NO-Spezies von Gland et al. übernommen [67, 72]. LEED- und RAIRS-Untersuchungen von Matsumoto et al. ergaben jedoch, dass NO im UHV bis zu einer Sättigungsbekleidung von 0,75 ML zunächst auf fcc-Plätzen, dann auf atop- und zuletzt auf hcp-Plätzen adsorbiert, wobei die atop-Spezies aus energetischen Gründen gegen die \langle 11\bar{2} \rangle -Richtung geneigt ist, während die N-O-Bindung der beiden anderen Spezies senkrecht zur Oberfläche ausgerichtet ist [73]. Alle NO-Adsorbatspezies sind dabei über das N-Atom an die Platin-Oberfläche gebunden, wobei Platin als Elektronendonator fungiert. Dass die Besetzung von atop-Plätzen trotz der höheren Stabilität der NO-Oberflächenspezies auf den hochkoordinierten Plätzen bei leerer Oberfläche gegenüber der Adsorption auf hcp-Plätzen bevorzugt wird, liegt daran, dass die Belegung hochkoordinierter Adsorbatplätze eine starke Relaxation der Oberflächenatome induziert, wodurch starke repulsive Adsorbat-Adsorbat-Wechselwirkungen entstehen. Infolge dessen ist eine Kombination aus fcc- und
6.2. Elementarkinetik der NO-Oxidation auf Platin

atop-NO Spezies auf der Oberfläche thermodynamisch stabiler als die ausschließlichliche Besetzung der dreifach koordinierten Adsorptionsplätze [45, 62]. Somit ergibt sich eine vom NO-Bedeckungsgrad der Oberfläche abhängige Adsorptionswärme. Die oben genannte Besetzungsschichtfolge der Oberflächenplätze wird jedoch nur unter Gleichgewichtsbedingungen streng befolgt [69]. Abgesehen davon sind Entropieeffekte sowie Diffusionsvorgänge bei hohen Temperaturen zu berücksichtigen.

Aufgrund der permanent hohen Sauerstoffbedeckung der Oberfläche unter den Bedingungen der katalytischen NO-Oxidation müssen auch die Sorptionseigenschaften von Stickstoffmonoxid bei Coadsorption mit Sauerstoff betrachtet werden. Da Sauerstoffatome auf Pt(111) ebenfalls bevorzugt fcc-Plätze besetzen und die Energie von Platin-Sauerstoffbindungen die der Platin-Stickstoffmonoxidbindung bei weitem übertrifft, stabilisiert die Anwesenheit adsorbierter Sauerstoffatome die atop-gebundene NO-Spezies gegenüber der der fcc-Spezies, die auf einer leeren Oberfläche energetisch am günstigsten ist [45]. In Kombination mit repulsiven Adsorbat-Adsorbat-Wechselwirkungen sowie der Beeinflussung der lokalen elektronischen Struktur von hcp-NO-Spezies durch coadsorbierte Sauerstoff-Atome führt dies zu einer erheblichen Verringerung der NO-Adsorptionswärme mit steigendem Sauerstoffbedeckungsgrad [48]. Im Gegensatz zur Abnahme der Adsorptionswärme mit der Erhöhung der Oberflächenbedeckung von NO wird dies im aufgestellten Reaktionsmechanismus für die NO-Oxidation in Form einer Erniedrigung der Aktivierungsenthalpie in Abhängigkeit von der Sauerstoffbedeckung für die NO-Desorptionsreaktion berücksichtigt. Der NO-Bedeckungsgrad der Oberfläche hat hingegen keinen Einfluss auf die Kinetik der NO-Desorption, da sich die Effekte der Verringerung der Adsorptionswärme und der Verminderung des präexponentiellen Faktors mit steigender NO-Bedeckung gegenseitig aufheben [68].

Zur Ermittlung der Arrhenius-Parameter für einen elementarkinetischen Reaktionsmechanismus der NO-Oxidation wird in der vorliegenden Arbeit von Literaturwerten ausgegangen. Die Tabellen in Anhang A stellen eine Übersicht der in der Literatur gefundenen Werte für die Adsorptionswärme sowie der kinetischen Parameter von NO-Adsorption und -Desorption dar. Da die NO-Adsorption als nicht aktivierter Prozess angesehen werden kann, lässt sich die Aktivierungsenthalpie der molekularen Desorption mit der Adsorptionswärme gleichsetzen. Tabelle A.4 ist zu entnehmen, dass NO einen sehr hohen Anfangskoeffizienten hat, der
6. Mechanismusentwicklung

Die Adsorption von NO\textsubscript{2} auf freien Pt(111)-Oberflächen erfolgt bei sehr niedrigen Temperaturen (100 K) molekular, während NO\textsubscript{2} bei Raumtemperatur auf der Edelmetalloberfläche vollständig in adsorbierte NO-Moleküle und O-Atome dissoziert [74]. Die Anwesenheit großer Konzentrationen chemisorbierter Sauerstoffatome (0,75 ML), wie sie unter den Bedingungen der heterogen katalysierten NO-Oxidation vorliegen, unterdrückt jedoch die dissoziative Adsorption, sodass NO\textsubscript{2} auch bei hohen Temperaturen molekular und reversibel adsorbiert [46]. Während auf einer freien Oberfläche µ-N,O-nitrito-NO\textsubscript{2} das stabilste molekulare Adsorptionsisomer ist, werden bei hohen Sauerstoffbedeckungsgraden metastabile NO\textsubscript{2}-Spezies begünstigt, die C\textsubscript{2v}-Symmetrie besitzen [38, 45]. Darüber hinaus sinken sowohl die maximale Sättigungsbedeckung als auch die Aktivierungsentnergie für die Desorptionsreaktion mit zunehmender Sauerstoffkonzentration auf der Platin-Oberfläche. Die Ursache hierfür liegt in repulsiven Adsorbat-Adsorbat-Wechselwirkungen und ist aufgrund der hohen Elektronegativität von Sauerstoff und Stickstoffdioxid vornehmlich elektronischer Natur.

In den in Anhang A aufgeführten Tabellen sind Werte für die Adsorptionswärme der molekularen NO\textsubscript{2}-Adsorption auf Pt(111)-Oberflächen sowie kinetische Parameter für die Adsorption, Dissoziation und Desorption von NO\textsubscript{2} zu finden, die in der Fachliteratur publiziert worden sind. Da die molekulare Adsorption von NO\textsubscript{2}, äquivalent zum Fall der NO-Adsorption, als nicht aktivierter Prozess betrachtet werden kann, lässt sich auch hier die Aktivierungsentnergie der Desorption mit der Adsorptionswärme gleichsetzen.

Das NO\textsubscript{2}-Molekül hat viele verschiedene Möglichkeiten, mit seinen Stickstoff- und Sauerstoffatomen an Platin zu koordinieren. Somit lässt sich der sehr hohe Anfangskoeffizient von nahezu eins (siehe Tabelle A.5) dadurch erklären, dass NO\textsubscript{2} sich mit einer großen Anzahl verschiedener Adsorbatgeometrien auszeichnet, was dazu führt, dass die Chemisorptionswahrscheinlichkeit des Moleküls auf einer leeren Oberfläche der Wahrscheinlichkeit der Physisorption entspricht [45, 46, 74–76].
6.2. Elementarkinetik der NO-Oxidation auf Platin

6.2.4. Sorptionseigenschaften von O₂


In Anhang A sind publizierte Werte für die Adsorptionswärme der O₂-Adsorption auf Pt(111)-Oberflächen sowie die kinetischen Parameter der dissoziativen Adsorption und assoziativen Desorption zusammengestellt. Dabei ist zu beachten, dass die Aktivierungsenergie der Desorption in diesem Fall nicht der Adsorptionswärme entspricht, sondern sie übertrifft. Aufgrund des geringen Betrags der Aktivierungsenergie der dissoziativen Adsorption kann die Aktivierungsbarriere für die Rückreaktion aber dennoch mittels der Adsorptionswärme abgeschätzt werden.

6.2.5. NO-Oxidation und NO₂-Dissoziation

Über den Ablauf der Oberflächenreaktionen ist wenig bekannt. In dieser Arbeit wird für die NO-Oxidationsreaktion sowie für die NO₂-Dissoziation vom Langmuir-Hinshelwood Mechanismus ausgegangen, da sowohl die Ergebnisse experimenteller
Untersuchungen als auch theoretische Berechnungen dafür sprechen (siehe Abschnitt 4.2). Da für die NO-Oxidation die Anwesenheit schwach gebundener Oberflächenspezies essentiell ist, ist sie das Ergebnis von Veränderungen der Energetik der Katalysatoroberfläche, wobei Adsorbat-Adsorbat-Wechselwirkungen sowohl die NO-Oxidation als auch die \( \text{NO}_2 \)-Dissoziation fördern [45]. Die entsprechenden kinetischen Parameter, die in der Fachliteratur gefunden wurden, sind in Anhang A tabelliert.

### 6.2.6. Oberflächenbedeckung

Da der Bedeckungsgrad der Oberfläche bei der Platin katalysierten NO-Oxidation eine wesentliche Rolle spielt (siehe Abschnitt 4.2), soll an dieser Stelle näher auf die Oberflächenbedeckung unter technisch relevanten Reaktionsbedingungen eingegangen werden.

Während der NO-Oxidation sind adsorbierte NO-Moleküle und O-Atome die dominierenden Spezies auf der Oberfläche, wobei chemisorbiertes Sauerstoff unter den meisten Bedingungen mit einem Bedeckungsgrad von ca. 0,76 ML in der größten Konzentration vorkommt [34]. Da die dissoziative Adsorption von \( \text{O}_2 \) kinetisch gehemmt ist, wird die Menge an Sauerstoffatomen auf der Platin-Oberfläche durch die \( \text{NO}_2 \)-Dissoziation und die assoziative Sauerstoff-Desorption bedingt. Aufgrund der relativ geringen Adsorptionswärme ist auf Platin adsorbiertes \( \text{NO} \) gegenüber der Dissoziation in adsorbierte NO-Moleküle und O-Atome instabil. Weil darüber hinaus sowohl die \( \text{NO}_2 \)-Desorption als auch die \( \text{NO}_2 \)-Dissoziation hohe Geschwindigkeitskoefzienten aufweisen, befindet sich unter den Bedingungen der Platin katalysierten NO-Oxidation kaum \( \text{NO}_2 \) auf der Oberfläche. Stattdessen führen schon geringe \( \text{NO}_2 \)-Konzentrationen in der Gasphase zu großen Mengen an chemisorbierten Sauerstoffatomen, da die hoch aktivierte assoziative Desorption von Sauerstoff im Vergleich zur \( \text{NO}_2 \)-Adsorption und der anschließenden Dissoziationsreaktion langsam verläuft [39].

So ergibt eine Behandlung des Katalysators mit \( \text{NO}_2 \) bei 400 K bereits unter UHV einen Sauerstoffbedeckungsgrad der Platinoberfläche von ca. 0,76 ML, während im UHV mit \( \text{O}_2 \) bei 300 K nur eine Sättigungsbedeckung von 0,25 ML erreicht werden kann [8,35,64,76,80–82].

Bei der Entwicklung kinetischer Modelle für die Platin katalysierte NO-Oxidation
muss jedoch auch beachtet werden, dass sich bei niedrigen Temperaturen neben großen Konzentrationen an chemisorbiertem Sauerstoff viel adsorbiertes NO auf der Oberfläche befindet [7]. Der Grund hierfür ist zum einen, dass NO relativ zu NO$_2$ eine große Adsorptionswärme besitzt und zum anderen im Vergleich zu Sauerstoff eine wesentlich höhere Haftwahrscheinlichkeit aufweist, da NO sich - ebenso wie NO$_2$ - durch eine große Anzahl an möglichen Adsorptionsisomeren auszeichnet [45].

6.2.7. Platinoxidbildung

Abbildung 6.3.: Thermodynamische Gleichgewichtszusammensetzung von Platin in Abhängigkeit von der Temperatur (12% O$_2$, 500 ppm NO in N$_2$)

Die Vorstellung von Després et al. [8], dass die während der heterogenen NO-Oxidation beobachtete Katalysatordesaktivierung auf eine direkte Oxidation des Edelmetalls durch NO$_2$ zurückzuführen ist, ist unwahrscheinlich, da dadurch Desaktivierungseffekte durch O$_2$ nicht zu erklären sind. Vielmehr hängt die Platinoxidbildung vom Sauerstoffbedeckungsgrad der Oberfläche ab. Somit ist zu verstehen, dass unter identischen Reaktionsbedingungen das Ausmaß der oxidativen Desaktivierung durch NO$_2$ das durch O$_2$ bei weitem übertrifft, da NO$_2$ aufgrund des sehr hohen Haftkoeffizienten und der schnellen Dissoziation des Moleküls auf der Katalysatordichte in der Lage ist, in kurzer Zeit große Konzentrationen an adsorbiertem Sauerstoff bereitzustellen, während eine Exposition der Oberfläche
6. Mechanismusentwicklung

zu O₂ einen wesentlich geringeren Sauerstoffbedeckungsgrad ergibt, was auf die kinetische Hemmung der dissoziativen Sauerstoffadsorption zurückzuführen ist.

Aus thermodynamischer Sicht ist unter den Bedingungen der heterogen katalysierten NO-Oxidation sowohl PtO als auch PtO₂ gegenüber metallischem Platin energetisch begünstigt. So zeigt die mit dem Programm HSC berechnete thermodynamische Gleichgewichtszusammensetzung der festen Phase, dass Platin bei 12% O₂ und 500 ppm NO in der Gasphase erst ab Temperaturen über 750 K die stabilste Spezies darstellt.

Bei der Untersuchung der Platinoxidbildung ergab sich in der Vergangenheit zum einen das Problem, dass die Unterscheidung zwischen oxidischem, chemisorbiertem und Subsurface-Sauerstoff aufgrund von Verunreinigungen sowie des geringen kristallinen Charakters schwierig war [53] und zum anderen, dass Experimente, die unter UHV durchgeführt worden sind, sich nicht ohne Weiteres auf Bedingungen übertragen lassen, die in der technischen Katalyse vorherrschen. Da aber angenommen werden kann, dass die Kinetik der Platinoxidation ausschließlich vom Sauerstoffbedeckungsgrad der Oberfläche abhängig ist und es sich gezeigt hat, dass die Konzentration an chemisorbierten Sauerstoff-Atomen unter den Reaktionsbedingungen der heterogenen NO-Oxidation der Konzentration nach Exposition von Platin zu NO₂ im UHV entspricht, kann man von den entsprechenden experimentellen Daten ausgehen, um ein besseres Verständnis der oxidativen Desaktivierung des Edelmetalls im Laufe der NO-Oxidationsreaktion bei Atmosphäreendruck zu erlangen. Darüber hinaus tragen experimentelle Untersuchungen, die den Zustand von Platin bei hohen Sauerstoffbedeckungen, welche durch andere starke Oxidationsmittel wie atomaren Sauerstoff oder Ozon generiert werden können, in Betracht ziehen, zum Erkenntnisgewinn bei. Dabei hat sich gezeigt, dass Sauerstoffadsorption und Platinoxidbildung nur von der Menge der Sauerstoffatome beeinflusst werden, die durch das jeweilige Oxidationsmittel auf die Oberfläche des Edelmetalls gebracht wird und nicht von der Natur des Oxidationsmittels selbst [83]. Dies ermöglicht die Überbrückung der Drucklücke (siehe Abschnitt 6.1.2), indem die in der technischen Katalyse vorherrschenden hohen O₂-Drücke bei Oberflächenuntersuchungen unter UHV durch agressive Oxidationsmittel simuliert werden.

Bei geringen Bedeckungsgraden (bis 0,25 ML) besetzen Sauerstoffatome auf ei-
6.2. Elementarkinetik der NO-Oxidation auf Platin

er Pt(111)-Oberfläche bevorzugt fcc-Plätze, da dies zu der höchsten möglichen Adsorptionswärme führt, wobei die Relaxation von Platinatomen, an denen Sauerstoffatome koordiniert sind, einen erheblichen Beitrag leisten. Die Adsorption erfolgt aufgrund lateraler Adsorbant-Adsorbant-Wechselwirkungen derart, dass der Abstand zwischen den chemisorbierten Atomen maximal ist, was zu einer p(2 × 2)-Struktur führt [56, 79, 84, 85]. Bei höheren Sauerstoffkonzentrationen auf der Oberfläche werden auch die energetisch ungünstigeren hcp-Plätze belegt, was zusätzlich zu den repulsiven Wechselwirkungen eine weitere Abnahme der Adsorptionswärme bewirkt [86]. Mit steigender Sauerstoffbedeckung wächst die Unordnung auf der Oberfläche und ab 0,75 ML sinkt die Desorptionsrate, was auf die Bildung von Platinoxid hinweist. Devarajan et al. beobachteten bei STM-Untersuchungen von chemisorbierten Sauerstoffatomen auf Pt(111) die Entstehung von Ausbuchungen und Ketten auf atomarer Skala, die bei einem Bedeckungsgrad von 0,75 ML eine hexagonale Überstruktur bilden [87]. Die Ursache hierfür liegt vermutlich darin, dass adsorbiertes Sauerstoff über einen Austausch-Mechanismus in die bulk-Phase eindringt, was eine Restrukturierung der Platinoberfläche zur Folge hat [85].

DFT-basierte thermodynamische Simulationen der Wechselwirkung von Sauerstoff mit Platin ergaben, dass Sauerstoffbedeckungen über 0,5 ML aufgrund repulsiver Wechselwirkungen gegenüber dem Eindringen von Sauerstoff in die Subsurface-Region instabil sind, wobei die Aufrauhung der Oberfläche, die durch Relaxation von Platinatomen infolge der Chemisorption verursacht wird, eine bessere Erreichbarkeit der Subsurface-Region gewährt [63]. Dass die Platinoxidation allerdings erst ab einem Bedeckungsgrad von ca. 0,75 ML einsetzt, liegt an der kinetischen Hemmung des Vorgangs, der durch den hohen Energieaufwand zur Brechung von Platin-Platin-Bindungen zustande kommt [64, 83]. Bei geringeren Bedeckungsgraden konnte als einzige Spezies atomar adsorbiert Sauerstoff nachgewiesen werden [75].

Eine genaue Kenntnis der Natur des gebildeten Platinoxids ist gegenwärtig noch nicht vorhanden. Es wird vermutet, dass Platinoxid unterhalb der Oberfläche als 3D-Partikel wächst, da relativ große Regionen auf der Oberfläche auch nach Aufnahme großer Mengen an Sauerstoff (2 ML) metallisch bleiben. XPS-Untersuchungen ergaben eine Bindungsenergie der 4f₂⁰-Elektronen von Platin in Platinoxids, die zwischen denen von Bulk-PtO und Bulk-PtO₂ liegt, dem des letzteren allerdings näher ist. Somit dürfte das gebildete Oxid PtO₂ strukturell ähnlich sein und
6. Mechanismusentwicklung

Sauerstoff-Leerstellen oder andere Oxide wie Pt$_2$O$_3$ enthalten [83]. Bei der thermischen Reaktivierung von Platin erfolgt die Desorption infolge der Zersetzung von Platinoxidpartikeln explosiv, da die Oberflächenspannung und so mit die Zersetzungsraten mit sinkender Partikelgröße steigt [84].

Die durch die Oxidbildung verursachten Versetzungen auf der Oberfläche sowie die veränderte elektronische Struktur sind mögliche Ursachen der Desaktivierung von Platin gegenüber der heterogenen NO-Oxidation. Schließlich hat es sich gezeigt, dass die NO-Oxidation struktursensitiv ist (siehe Abschnitt 4.1). So lässt sich die oxidative Katalysatordesaktivierung darauf zurückführen, dass NO stärker auf Stufen und Kinken adsorbiert als auf einer perfekten Pt(111)-Oberfläche, was eine Erhöhung der Aktivierungsentnergie der NO-Oxidationsreaktion nach dem Langmuir-Hinshelwood-Mechanismus zur Folge hat. Das Ausmaß der Oxidation hängt von der Temperatur ab, wobei hohe Temperaturen bis 600°C die Oxidbildung aufgrund der erhöhten Mobilität der chemisorbierten Sauerstoffatome begünstigen [54], während die reduktive Regenerierung des Katalysators unter den Bedingungen der technischen NO-Oxidation bei relativ niedrigen Temperaturen erfolgt, da das Verhältnis der NO-Konzentration auf der Oberfläche zur Sauerstoffbedeckung dann ausreichend groß ist, um den Prozess der Reaktivierung gegenüber der Desaktivierung zu begünstigen.

6.3. Modellansätze für die oxidative Katalysatordesaktivierung

Im Rahmen dieser Arbeit wurden zwei Reaktionsmechanismen für die Umsetzung von NO zu NO$_2$ über Platin aufgestellt, die sich hauptsächlich in der Beschreibung der oxidativen Desaktivierung des Katalysators unterscheiden. Zur Überprüfung der Annahme, dass das Ausmaß der Platinoxidation kinetisch begrenzt ist und ausschließlich von der Konzentration atomar adsorbierten Sauerstoffs auf der Oberfläche abhängt, wurde zunächst ein einfaches Modell aufgestellt, welches davon ausgeht, dass ein Teil des chemisorbierten Sauerstoffs mit Platin zu katalytisch inaktivem Platinoxid reagiert (Mechanismus A, siehe Tabelle B.1 in Anhang B). Darauf aufbauend wurde ein detaillierteres Modell ausgearbeitet, das mit Mechanismus B (siehe Tabelle B.2) gegeben ist, welcher das Eindringen von Sauerstoff in die Bulk-Phase sowie die mit der Umstrukturierung der Oberfläche einhergehend-
6.3. Modellansätze für die oxidative Katalysatordesaktivierung

de Erhöhung der Aktivierungsergien für Desorptionsreaktionen berücksichtigt. Dies wird dadurch realisiert, dass eine zweite Festphasenspezies (b) mit derselben Oberflächenplatzdichte wie die der Platinoberfläche, definiert wird. Sie stellt die Bulkphase unter der Platinoberfläche dar und kann durch chemisorbierte Sauerstoffatome zum Oxid O\textsubscript{2} (b) umgesetzt werden. Zudem wird eine Abhängigkeit der Aktivierungsergie der Desorptionsreaktionen von der Konzentration der Bulk-Oxidspezies eingeführt.
7. Diskussion der Ergebnisse


Die für die Simulationen benötigten Parameter sind der Beschreibung der Experimente zu entnehmen (Abschnitt 5). Das Verhältnis der aktiven zur geometrischen Oberfläche \( \frac{F_{\text{cat/geo}}}{\text{geo}} \) beträgt 19 für den DOC 20 und 48 für den DOC 120. Für den Katalysator von Hauptmann wurde mit der angegebenen Dispersion von 5% ein \( \frac{F_{\text{cat/geo}}}{\text{geo}} \) von 8,74 berechnet.

7.1. Modellierung der Hauptmann-Experimente

Die Experimente von Hauptmann können, abgesehen von dem eigens hierfür angepassten Mechanismus von Hauptmann selbst, mit keinem der aufgeführten Modelle korrekt beschrieben werden, da der Umsatz selbst bei Annahme unrealistisch hoher \( \frac{F_{\text{cat/geo}}}{\text{geo}} \)-Werte stets deutlich unterschätzt wird. Die Ursache hierfür liegt wahrscheinlich darin, dass ein kommerzieller Katalysator verwendet wurde, der zusätzlich zu Platin und Al\(_2\)O\(_3\) Promotoren enthält, deren Einfluss auf den Umsatz in den Modellen nicht erfasst wird.

Selbst das Hauptmann-Modell ist nicht in der Lage, das stationäre Verhalten des Katalysators zu reproduzieren. Zwar werden die Light-Off/-Out-Experimente durch das Modell sehr gut wiedergegeben (Abbildung 7.1), jedoch ist im isothermen Fall zu erkennen, dass der Reaktionsmechanismus die Kinetik der Katalysatordesaktivierung erheblich überschätzt 7.2. Dies ist damit zu erklären, dass die Platinoxidation im Hauptmann-Modell mittels globalkinetischer Reaktionen be-
7.1. Modellierung der Hauptmann-Experimente

... schrieben wird, die auf dem unrealistischen Ansatz von Després basieren (siehe Abschnitt 6.2.7).

Abbildung 7.1.: Light-Off/-Out-Experimente von Hauptmann und Hauptmann-Modell

Abbildung 7.2.: Stationäre Versuche von Hauptmann und Hauptmann-Modell

Da es aufgrund zusätzlicher unbekannter Katalysatorkomponenten nicht möglich ist, das Verhalten des Katalysators, der in den Hauptmann-Experimenten eingesetzt wurde, elementarkinetisch zu beschreiben, dienten die Ergebnisse der FVV-Experimente bei der Entwicklung der neuen Modelle zur Orientierung.
7. Diskussion der Ergebnisse

7.2. Modellierung FVV-Experimente

7.2.1. DOC 120

Abbildung 7.3.: Modellierungsergebnisse der Light-Off/-Out-Experimente mit dem DOC 120; TD: Mit DETCHEM_EQUIL berechnetes thermodynamisches Gleichgewicht

Die Ergebnisse der Light-Off/-Out-Experimente mit dem DOC 120 konnten durch keinen der publizierten Reaktionsmechanismen korrekt wiedergegeben werden (Abbildung 7.3a). Wie in Abschnitt 4.4 erwähnt, wird die oxidative Desaktivierung des Platins in den Modellen von Koop und Olsson nicht berücksichtigt, was dazu führt, dass der Hysterese-Effekt nicht dargestellt werden kann. Der Hauptmann-Mechanismus, enthält zwar Reaktionen zur Platinoxidbildung, ist allerdings nicht auf den hier verwendeten Katalysator übertragbar, da die Reaktionsgeschwindigkeit derart überschätzt wird, dass das thermodynamische Gleichgewicht bereits bei 400 K sofort erreicht wird.


Die Simulationsergebnisse des stationären Verhaltens des DOC 120 befinden sich in Anhang C. Ihnen ist zu entnehmen, dass das stationäre Verhalten des Katalysators unabhängig von der NO-Konzentration nur bei hohen Temperaturen durch den
Koop-Mechanismus gut beschrieben wird, während der Mechanismus von Olsson den NO-Umsatz zwar bei 150°C und in der Nähe des thermodynamischen Gleichgewichts richtig wiedergibt, bei mittleren Temperaturen aber davon abweicht, da die Platinoxidbildung nicht berücksichtigt wird (Abbildung C.1 und C.2).

Der neu aufgestellte Mechanismus A hingegen, ist in der Lage, das stationäre Verhalten des Katalysators im gesamten relevanten Temperaturbereich korrekt zu beschreiben. Zwar wird der Umsatz bei hohen Temperaturen überschätzt, da die thermodynamische Konsistenz der Bedeckungsabhängigkeit der Aktivierungsenergien nicht gegeben ist, jedoch ist zu erkennen, dass die Kinetik der Platinoxidbildung durch das neue Modell gut reproduziert werden kann. Dies rechtfertigt die Annahme, dass das Ausmaß der oxidativen Desaktivierung des Katalysators allein von der Konzentration atomar adsorbierten Sauerstoffs auf der Oberfläche abhängig ist.

Auch das detailliertere Modell B kann die Temperaturabhängigkeit der Platinoxidation richtig wiedergeben. Allerdings wird in diesem Fall das Ausmaß der Desaktivierung bei tiefen Temperaturen unterschätzt, da sich das Gleichgewicht zwischen der Bildung der Bulk-Oxidspzies und der reduktiven Regeneration des Edelmetallkatalysators zu schnell einstellt. Das stationäre Verhalten des Katalysators bei hohen Temperaturen hingegen, kann durch Mechanismus B sehr gut beschrieben werden.

### 7.2.2. DOC 20


Auch hier ist zu erkennen, dass die Modelle von Olsson, Koop und Hauptmann den NO-Umsatz stark überschätzen. Die neuen Mechanismen hingegen, können zur Beschreibung des Verhaltens des Katalysators hinsichtlich der NO-Oxidation verwendet werden. Jedoch ist den Diagrammen zu entnehmen, dass die Platin-
7. Diskussion der Ergebnisse

oxidation unter Reaktionsbedingungen durch Mechanismus A überschätzt wird, während Simulationen mit Mechanismus B, wie auch schon bei der Modellierung des stationären Verhaltens von DOC 120, bei Temperaturen zwischen 475 K und 575 K einen zu geringen Desaktivierungseffekt ergeben.

Abbildung 7.4.: Modellierungsergebnisse des stationären Verhaltens des DOC 20
8. Zusammenfassung und Ausblick


Viel versprechende technologische Ansätze zur Lösung dieses Problems sind die selektive katalytische Reduktion (SCR) und NO$_x$-Speicherkatalysatoren (NSR). Allerdings sind beide Technologien nur bei einem hohen NO$_2$-Anteil effektiv, weshalb sie auf eine vorangehende Oxidation von NO, welches den Hauptanteil der Stickoxide in Autoabgasen ausmacht, angewiesen sind. In Dieselabgasen ist dies die Aufgaben von Dieseloxydationskatalysatoren, die meist nanodispers auf einem Al$_2$O$_3$-Washcoat verteiltes Platin als katalytisch aktive Komponente enthalten. Jedoch wurde bei experimentellen Untersuchungen solcher Katalysatorsysteme eine Abnahme des NO-Umsatzes mit der Zeit aufgrund einer reversibel oxidativen Desaktivierung des Edelmetalls festgestellt, wobei die Vorgänge auf atomarer Ebene, die zu diesem Phänomen führen, nicht bekannt sind, da aufgrund der Druck- und Materialbindung keine zuverlässigen experimentellen Untersuchungen vorliegen, die die entsprechenden Prozesse aufklären könnten.

In solchen Fällen stellen numerische Simulationen ein nützliches Werkzeug dar, weil sie zu einem besseren Verständnis von Reaktionssystemen führen können, sofern sie auf detaillierten physikalisch und chemisch korrekten Modellen basieren.

So wurde im Rahmen dieser Arbeit ein elementarkinetischer Reaktionsmechanis-
8. Zusammenfassung und Ausblick

mus für die NO-Oxidation über Platin entwickelt, der eine detaillierte Darstellung der oxidativen Katalysatordesaktivierung enthält. Zunächst wurde hierzu nach ausführlicher Literaturrecherche ein Reaktionsmechanismus aufgestellt, der ein einfaches Modell für die Platinoxidation beinhaltet, welches von den bisherigen Vorstellungen abweicht (Mechanismus A). Nach dessen Validierung wurde das Modell erweitert, um eine realistische Beschreibung des Desaktivierungseffekts zu erreichen (Mechanismus B).

Neben Adsorptions- und Desorptionsreaktionen für O₂, NO und NO₂ enthält der neu aufgestellte Mechanismus Elementarreaktionen für die NO-Oxidation und NO₂-Dissoziation, die auf dem Langmuir-Hinshelwood-Mechanismus beruhen, da sich dieser als wahrscheinlicher als der Eley-Rideal-Mechanismus erwiesen hat (Abschnitt 4.2). Die Katalysatordesaktivierung wird im Gegensatz zum Modell, das im vorigen Jahr von Hauptmann et al. [36] publiziert wurde, nicht globalkinetisch über die direkte Oxidation des Edelmetalls durch NO₂ beschrieben, sondern beruht auf dem Ansatz, dass die Kinetik der Platinoxidation und -reduction ausschließlich von der Konzentration atomar adsorbierten Sauerstoffs auf der Oberfläche bestimmt wird. Diese Modellvorstellung zeichnet sich dadurch aus, dass sie in der Lage ist, nicht nur die oxidative Desaktivierung des Katalysators durch NO₂ zu beschreiben, sondern auch die experimentell vielfach beobachtete Platinoxidation durch andere Stoffe wie O₂, O₃ oder atomaren Sauerstoff. Darüber hinaus stellt dieses Modell eine Erklärung dafür bereit, dass die Geschwindigkeit der Platinoxidation durch NO₂ jene durch O₂ wesentlich übertrifft. NO₂ kann nämlich bereits in geringen Konzentrationen zu einem hohen Sauerstoffbedeckungsgrad der Oberfläche führen, da NO₂-Adsorption und -Dissoziation sehr schnell ablaufen, während die dissoziative Adsorption von O₂ kinetischen Grenzen unterliegt.

Der desaktivierende Effekt der Platinoxidation auf die heterogen katalysierte NO-Oxidation wird im neu entwickelten, detaillierten Modell über die Erhöhung der Aktivierungsentnergien für die Desorptionsreaktionen mit steigender Konzentration der gebildeten Bulk-Oxidspezies realisiert. Die Begründung hierfür liegt darin, dass das Eindringen von Sauerstoff in die Bulk-Phase des Edelmetalls die Bildung von Stufen und Kinken auf der Oberfläche verursacht, was insgesamt zu einer Erhöhung der Adsorptionswärmen führt.

Es konnte gezeigt werden, dass ein elementarkinetischer Mechanismus, der das beschriebene Modell der Platinoxidation enthält, imstande ist, sowohl das transiente

Literaturverzeichnis


Literaturverzeichnis


[14] Deutschmann, O. *Interactions between transport and chemistry in catalytic reactors* Habilitationsschrift, Universität Heidelberg, **2001**.


Literaturverzeichnis


Literaturverzeichnis


A. Publizierte Adsorptionswärmen und kinetische Parameter

A.1. Adsorptionswärmen für NO, NO$_2$ und O$_2$

<table>
<thead>
<tr>
<th>$Q(\Theta_{NO} = 0)$ [kJ/mol]</th>
<th>$Q(\Theta_{NO,max})$ [kJ/mol]</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td></td>
<td>DFT, 5 Pt-Schichten</td>
<td>[38]</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>DFT, 4 Pt-Schichten</td>
<td>[38]</td>
</tr>
<tr>
<td>208</td>
<td>202</td>
<td>fcc, $\Theta_{NO,max} = 0,75$</td>
<td>[62]</td>
</tr>
<tr>
<td>185</td>
<td>102</td>
<td>hcp, $\Theta_{NO,max} = 0,75$</td>
<td>[62]</td>
</tr>
<tr>
<td>155</td>
<td>149</td>
<td>atop, $\Theta_{NO,max} = 0,75$</td>
<td>[62]</td>
</tr>
<tr>
<td>135</td>
<td>105</td>
<td>Defektsstellen</td>
<td>[70]</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>DFT, fcc, unrelaxiert</td>
<td>[88]</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>DFT, fcc, relaxiert</td>
<td>[88]</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>DFT, hcp</td>
<td>[88]</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>DFT, verbrückt</td>
<td>[88]</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>DFT, linear atop</td>
<td>[88]</td>
</tr>
<tr>
<td>96-145</td>
<td>experimentell</td>
<td></td>
<td>[88]</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>$\Theta_O = 0,75$</td>
<td>[47]</td>
</tr>
<tr>
<td>142</td>
<td>105</td>
<td></td>
<td>[74]</td>
</tr>
<tr>
<td>138</td>
<td>80</td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td>[80]</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>[89]</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td>[67]</td>
</tr>
</tbody>
</table>

Tabelle A.1.: Berechnete und experimentell ermittelte Adsorptionswärmen der NO-Adsorption auf Pt(111)-Oberflächen
### A.1. Adsorptionswärmen für NO, NO₂ und O₂

<table>
<thead>
<tr>
<th>( \Theta_O )</th>
<th>( Q \left[ \frac{kJ}{mol} \right] )</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>≥ 80</td>
<td></td>
<td>[74]</td>
</tr>
<tr>
<td>0,3</td>
<td>79</td>
<td></td>
<td>[46]</td>
</tr>
<tr>
<td>0,75</td>
<td>46</td>
<td></td>
<td>[46]</td>
</tr>
<tr>
<td>0</td>
<td>129-139 (^1)</td>
<td>DFT</td>
<td>[38]</td>
</tr>
</tbody>
</table>

\(^1\) vier unterschiedliche Adsorbate geometrien

Tabelle A.2.: Experimentell ermittelte und berechnete Adsorptionswärmen der molekularen NO₂-Adsorption auf Pt(111)-Oberflächen

<table>
<thead>
<tr>
<th>( \Theta_O )</th>
<th>( Q \left[ \frac{kJ}{mol} \right] )</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
<td>Pt-Cluster</td>
<td>[39]</td>
</tr>
<tr>
<td>0</td>
<td>388</td>
<td>DFT</td>
<td>[64]</td>
</tr>
<tr>
<td>0</td>
<td>316</td>
<td></td>
<td>[41]</td>
</tr>
<tr>
<td>0</td>
<td>188</td>
<td></td>
<td>[84]</td>
</tr>
<tr>
<td>0</td>
<td>316 ± 34</td>
<td>MC</td>
<td>[56]</td>
</tr>
<tr>
<td>0</td>
<td>308 ± 32</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>0</td>
<td>339 ± 32</td>
<td>Defektplätze</td>
<td>[79]</td>
</tr>
<tr>
<td>0</td>
<td>213</td>
<td></td>
<td>[75]</td>
</tr>
<tr>
<td>0</td>
<td>213</td>
<td></td>
<td>[77]</td>
</tr>
<tr>
<td>0,1</td>
<td>180</td>
<td>MC</td>
<td>[56]</td>
</tr>
<tr>
<td>0,1</td>
<td>211</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>0,25</td>
<td>151</td>
<td>DFT</td>
<td>[64]</td>
</tr>
<tr>
<td>0,25</td>
<td>166</td>
<td></td>
<td>[84]</td>
</tr>
<tr>
<td>0,25</td>
<td>170</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>0,25</td>
<td>180</td>
<td></td>
<td>[75]</td>
</tr>
<tr>
<td>0,25</td>
<td>176</td>
<td></td>
<td>[77]</td>
</tr>
<tr>
<td>0,3</td>
<td>140</td>
<td>Pt-Cluster</td>
<td>[39]</td>
</tr>
<tr>
<td>0,5</td>
<td>131</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>im Gleichgewicht</td>
<td>115 ± 8</td>
<td>MC</td>
<td>[56]</td>
</tr>
</tbody>
</table>

Tabelle A.3.: Adsorptionswärmen der dissoziativen O₂-Adsorption bzgl. O₂ auf Pt(111)-Oberflächen
### A.2. Kinetische Parameter der Adsorption von NO, NO₂ und O₂

<table>
<thead>
<tr>
<th>( S^0/A ) ([\frac{1}{s}])</th>
<th>( E_a ) ([kJ/mol])</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,80 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>8,50 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[17]</td>
</tr>
<tr>
<td>6,58 ( \cdot 10^{6} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>7,64 ( \cdot 10^{6} )</td>
<td>27,5</td>
<td>Modell</td>
<td>[30]</td>
</tr>
<tr>
<td>34,7</td>
<td>hohe Oberflächenbedeckung</td>
<td></td>
<td>[34]</td>
</tr>
<tr>
<td>9,60 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td></td>
<td>[48]</td>
</tr>
<tr>
<td>8,80 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td></td>
<td>[68]</td>
</tr>
</tbody>
</table>

Tabelle A.4.: Kinetische Daten für die Elementarreaktion \( \text{NO} + (\text{Pt}) \rightarrow \text{NO(Pt)} \)

<table>
<thead>
<tr>
<th>( S^0/A ) ([\text{m}^3/\text{mol s}])</th>
<th>( E_a ) ([kJ/mol])</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,70 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>9,00 ( \cdot 10^{-1} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>6,32 ( \cdot 10^{6} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>5,92 ( \cdot 10^{6} )</td>
<td>0,0</td>
<td>Modell</td>
<td>[30]</td>
</tr>
<tr>
<td>&gt; 9,70 ( \cdot 10^{-1} )</td>
<td>&lt; 8,4</td>
<td></td>
<td>[74]</td>
</tr>
</tbody>
</table>

Tabelle A.5.: Kinetische Daten für die Elementarreaktion \( \text{NO}_2 + (\text{Pt}) \rightarrow \text{NO}_2(\text{Pt}) \)

<table>
<thead>
<tr>
<th>( A ) ([\frac{1}{s}])</th>
<th>( E_a ) ([kJ/mol])</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,79 ( \cdot 10^{12} ) (^1)</td>
<td>53 (^1)</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>2,21 ( \cdot 10^{10} )</td>
<td>58</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>9,65 ( \cdot 10^{11} ) (^1)</td>
<td>( 58 + 14\Theta_O + 7\Theta_{NO} )</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>1,00 ( \cdot 10^{13} )</td>
<td>79,5</td>
<td>( \Theta_O = 0,25; \text{nitrito-NO}_2 )</td>
<td>[47]</td>
</tr>
</tbody>
</table>

\(^1\) Über den thermodynamischen Zyklus berechnet

Tabelle A.6.: Kinetische Daten für die Elementarreaktion \( \text{NO}_2(\text{Pt}) \rightarrow \text{NO(Pt)} + \Theta(\text{Pt}) \)
A.2. Kinetische Parameter der Adsorption von NO, NO₂ und O₂

<table>
<thead>
<tr>
<th>S₀</th>
<th>(E_a) ([\text{kJ/mol}])</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 42 (\cdot 10^{-2})</td>
<td>0,0</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>7, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td>Modell</td>
<td>[40]</td>
</tr>
<tr>
<td>7, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td>Modell</td>
<td>[17]</td>
</tr>
<tr>
<td>6, 40 (\cdot 10^{-2})</td>
<td>21</td>
<td>Modell</td>
<td>[30]</td>
</tr>
<tr>
<td>6, 40 (\cdot 10^{-2})</td>
<td></td>
<td>MC</td>
<td>[56]</td>
</tr>
<tr>
<td>6, 00 (\cdot 10^{-2})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 30 (\cdot 10^{-2})</td>
<td>30</td>
<td>TPD</td>
<td>[31]</td>
</tr>
<tr>
<td>3, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td>[91]</td>
</tr>
<tr>
<td>5, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td>[84]</td>
</tr>
<tr>
<td>5, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>7, 00 (\cdot 10^{-2}) · 300 K (T)</td>
<td>46,0</td>
<td></td>
<td>[78]</td>
</tr>
<tr>
<td>6, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\geq 37,66) (\Theta_o = 0, 25)</td>
<td></td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>(\geq 79,5) (\Theta_o = 0, 42)</td>
<td></td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>(\geq 66,9) (\Theta_o = 0, 5)</td>
<td></td>
<td>[82]</td>
</tr>
<tr>
<td>6, 00 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 50 (\cdot 10^{-2})</td>
<td>0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A.7.: Kinetische Daten für die Elementarreaktion \(O_2 + (Pt) \rightarrow 2 O(Pt)\)
A.3. Kinetische Parameter der Desorption von NO, NO₂ und O₂

<table>
<thead>
<tr>
<th>$A \left[ \frac{1}{s} \right]$</th>
<th>$E_a \left[ \frac{kJ}{mol} \right]$</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>$138 - 30\Theta_O - 33\Theta_{NO}$</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>$2,05 \cdot 10^{12}$</td>
<td>80,7</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>116,0</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>$1,0 \cdot 10^{16}$</td>
<td>140,0</td>
<td>Modell</td>
<td>[17]</td>
</tr>
<tr>
<td>$1,0 \cdot 10^{13}$</td>
<td>114,0</td>
<td>Modell</td>
<td>[30]</td>
</tr>
<tr>
<td>$1,0 \cdot 10^{13}$</td>
<td>123,5</td>
<td>DFT</td>
<td>[38]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{13}$</td>
<td>79,5</td>
<td>$\Theta_O &gt; 0$</td>
<td>[47]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>142,3</td>
<td></td>
<td>[74]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>104,6</td>
<td>$2,9 \text{ L } NO_2$</td>
<td>[74]</td>
</tr>
<tr>
<td>$1 \cdot 10^{15,5\pm 0,6}$</td>
<td>$138,5 \pm 2,1$</td>
<td>Defektstellen</td>
<td>[68]</td>
</tr>
<tr>
<td>$3,16 \cdot 10^{15}$</td>
<td>113,0</td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td>$1 \cdot 10^{12,6\pm 0,5}$</td>
<td>$71,5 \pm 2,1$</td>
<td>$\Theta_O = 0,25$</td>
<td>[68]</td>
</tr>
<tr>
<td>$1 \cdot 10^{12,2}$</td>
<td>79,9</td>
<td>$\Theta_{NO} = 0,24$</td>
<td>[68]</td>
</tr>
</tbody>
</table>

Tabelle A.8.: Kinetische Daten für die Elementarreaktion NO(Pt) $\rightarrow$ NO + (Pt)

<table>
<thead>
<tr>
<th>$A \left[ \frac{1}{s} \right]$</th>
<th>$E_a \left[ \frac{kJ}{mol} \right]$</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>$119 - 45\Theta_O$</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>$1,44 \cdot 10^{13}$</td>
<td>61,0</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{16}$</td>
<td>$98 - 12\Theta_O$</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>$2,48 \cdot 10^{13}$</td>
<td>$109,4 - 8\Theta_O$</td>
<td>Modell</td>
<td>[30]</td>
</tr>
<tr>
<td>$1,00 \cdot 10^{13}$</td>
<td>79,5</td>
<td></td>
<td>[74]</td>
</tr>
</tbody>
</table>

Tabelle A.9.: Kinetische Daten für die Elementarreaktion NO₂(Pt) $\rightarrow$ NO₂ + (Pt)
A.3. Kinetische Parameter der Desorption von NO, NO\(_2\) und O\(_2\)

<table>
<thead>
<tr>
<th>(\Theta_O)</th>
<th>(A \left[ \frac{1}{s} \right])</th>
<th>(E_a \left[ \frac{kJ}{mol} \right])</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,41 \cdot 10^{12})</td>
<td>207 - 134(\Theta_O)</td>
<td>Modell</td>
<td>[42]</td>
<td></td>
</tr>
<tr>
<td>(8,75 \cdot 10^{12})</td>
<td>225 - 120(\Theta_O)</td>
<td>Modell</td>
<td>[52]</td>
<td></td>
</tr>
<tr>
<td>(1,00 \cdot 10^{13})</td>
<td>232,2 - 90(\Theta_O)</td>
<td>Modell</td>
<td>[17]</td>
<td></td>
</tr>
<tr>
<td>(1,01 \cdot 10^{13})</td>
<td>157,8 - 16(\Theta_O)</td>
<td>Modell</td>
<td>[30]</td>
<td></td>
</tr>
<tr>
<td>(1,00 \cdot 10^{15})</td>
<td>209 - 23 (\Theta_O)</td>
<td>TPD</td>
<td>[31]</td>
<td></td>
</tr>
<tr>
<td>(1,0 \cdot 10^{13})</td>
<td>51 - 32 (\Theta_O)</td>
<td>Modell</td>
<td>[91]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>212,3 - 40,5 (\Theta_O)</td>
<td></td>
<td>[78]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>213,4</td>
<td></td>
<td>[74]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>213,0</td>
<td></td>
<td>[77]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>240</td>
<td></td>
<td>[92]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>213,4</td>
<td></td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>209,2</td>
<td></td>
<td>[75]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>213,4</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,2</td>
<td>188,3</td>
<td></td>
<td>[84]</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>188,0</td>
<td></td>
<td>[83]</td>
<td></td>
</tr>
<tr>
<td>0,25 (1,0 \cdot 10^{13})</td>
<td>179,9</td>
<td></td>
<td>[91]</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>175,7</td>
<td></td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>179,9</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>176</td>
<td></td>
<td>[77]</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>135,0</td>
<td></td>
<td>[79]</td>
<td></td>
</tr>
<tr>
<td>0,32</td>
<td>133,9</td>
<td></td>
<td>[84]</td>
<td></td>
</tr>
<tr>
<td>0,32</td>
<td>121,3</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,4</td>
<td>117,2</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>125,52</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,75</td>
<td>110</td>
<td></td>
<td>[83]</td>
<td></td>
</tr>
<tr>
<td>0,75</td>
<td>117,2</td>
<td></td>
<td>[75]</td>
<td></td>
</tr>
<tr>
<td>0,75</td>
<td>117,2</td>
<td></td>
<td>[82]</td>
<td></td>
</tr>
<tr>
<td>0,76</td>
<td>109,0</td>
<td></td>
<td>[83]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,0 \cdot 10^{14}</td>
<td>181,0</td>
<td>[83]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,0 \cdot 10^{13}</td>
<td>79,5</td>
<td>[91]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>108,8</td>
<td></td>
<td>[84]</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle A.10.: Kinetische Daten für die Elementarreaktion \(2\) O(Pt) \(\rightarrow\) O\(_2\)+2 (Pt)
A. Publizierte Adsorptionswärmen und kinetische Parameter

A.4. Kinetische Parameter der NO-Oxidation und NO₂-Dissociation

<table>
<thead>
<tr>
<th>( A ) [s⁻¹]</th>
<th>( E_a ) [kJ/mol]</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00 \cdot 10^{11}</td>
<td>123 - 38\Theta_O - 26\Theta_{NO}</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>3,59 \cdot 10^{8}</td>
<td>133 + 75\Theta_{CO}</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>1,00 \cdot 10^{13}</td>
<td>101</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>1,0 \cdot 10^{13}</td>
<td>120,61</td>
<td>DFT; NO und O auf fcc</td>
<td>[1]</td>
</tr>
<tr>
<td>146,7</td>
<td>DFT; NO atop, O auf fcc</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>86,84</td>
<td>DFT; NO atop, O auf fcc</td>
<td>[1]</td>
<td></td>
</tr>
<tr>
<td>1,00 \cdot 10^{13}</td>
<td>96,23</td>
<td>nitro-NO₂</td>
<td>[47]</td>
</tr>
</tbody>
</table>

Tabelle A.11.: Kinetische Daten für die Elementarreaktion \( \text{NO}(\text{Pt}) + \text{O}(\text{Pt}) \rightarrow \text{NO}_2(\text{Pt}) + (\text{Pt}) \)

<table>
<thead>
<tr>
<th>( A ) [s⁻¹]</th>
<th>( E_a ) [kJ/mol]</th>
<th>Bemerkung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,65 \cdot 10^{11} ¹</td>
<td>58 + 14\Theta_O + 7\Theta_{NO}</td>
<td>Modell</td>
<td>[42]</td>
</tr>
<tr>
<td>2,21 \cdot 10^{10}</td>
<td>58</td>
<td>Modell</td>
<td>[52]</td>
</tr>
<tr>
<td>5,79 \cdot 10^{12} ¹</td>
<td>53</td>
<td>Modell</td>
<td>[31]</td>
</tr>
<tr>
<td>1,00 \cdot 10^{13}</td>
<td>79,5</td>
<td>nitrito-NO₂; \Theta_O = 0,25</td>
<td>[47]</td>
</tr>
</tbody>
</table>

¹ Über den thermodynamischen Zyklus berechnet

Tabelle A.12.: Kinetische Daten für die Elementarreaktion \( \text{NO}_2(\text{Pt}) + (\text{Pt}) \rightarrow \text{NO}(\text{Pt}) + \text{O}(\text{Pt}) \)
B. Neu entwickelte
Reaktionsmechanismen für die
NO-Oxidation über Platin

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>$A$ [mol, cm, s] / $S^0$</th>
<th>$E_a$ [kJ mol$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}_2 + 2 \text{(Pt)} \rightarrow 2 \text{O(Pt)}$</td>
<td>$2,500 \cdot 10^{-2}$</td>
<td>21,00</td>
</tr>
<tr>
<td>$2 \text{O(Pt)} \rightarrow \text{O}_2 + 2 \text{(Pt)}$</td>
<td>$1,898 \cdot 10^{20}$</td>
<td>215,12</td>
</tr>
<tr>
<td>$\text{NO} + \text{(Pt)} \rightarrow \text{NO(Pt)}$</td>
<td>$8,500 \cdot 10^{-1}$</td>
<td>0,0</td>
</tr>
<tr>
<td>$\text{NO(Pt)} \rightarrow \text{NO} + \text{(Pt)}$</td>
<td>$2,661 \cdot 10^{14}$</td>
<td>116,44</td>
</tr>
<tr>
<td>$\text{NO}_2 + \text{(Pt)} \rightarrow \text{NO}_2\text{(Pt)}$</td>
<td>$9,700 \cdot 10^{-1}$</td>
<td>0,0</td>
</tr>
<tr>
<td>$\text{NO}_2\text{(Pt)} \rightarrow \text{NO}_2 + \text{(Pt)}$</td>
<td>$3,758 \cdot 10^{14}$</td>
<td>92,76</td>
</tr>
<tr>
<td>$\text{O(Pt)} + \text{NO(Pt)} \rightarrow \text{NO}_2\text{(Pt)} + \text{(Pt)}$</td>
<td>$3,680 \cdot 10^{21}$</td>
<td>146,70</td>
</tr>
<tr>
<td>$\text{NO}_2\text{(Pt)} + \text{(Pt)} \rightarrow \text{O(Pt)} + \text{NO(Pt)}$</td>
<td>$9,792 \cdot 10^{22}$</td>
<td>82,94</td>
</tr>
<tr>
<td>$2 \text{O(Pt)} \rightarrow (\text{PtO}_2) + \text{(Pt)}$</td>
<td>$3,680 \cdot 10^{16}$</td>
<td>235,00</td>
</tr>
<tr>
<td>$(\text{PtO}_2) + \text{(Pt)} \rightarrow 2 \text{O(Pt)}$</td>
<td>$3,680 \cdot 10^{12}$</td>
<td>16,80</td>
</tr>
</tbody>
</table>

Tabelle B.1.: Mechanismus A mit bedeckungsabhängiger Platinoxidation
B. Neu entwickelte Reaktionsmechanismen für die NO-Oxidation über Platin

<table>
<thead>
<tr>
<th>Reaktion</th>
<th>$A \ [\text{mol}, \text{cm}, \text{s}] / S^0$</th>
<th>$E_a \ [\text{kJ/mol}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}_2 + 2 \text{(Pt)}$</td>
<td>$2,500 \cdot 10^{-2}$</td>
<td>21,00</td>
</tr>
<tr>
<td>$2 \text{O}(\text{Pt})$</td>
<td>$1,907 \cdot 10^{20}$</td>
<td>214,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-128,40 \cdot \Theta_O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+22,00 \cdot \Theta_{O_2(b)}$</td>
</tr>
<tr>
<td>$\text{NO} + \text{(Pt)}$</td>
<td>$8,500 \cdot 10^{-1}$</td>
<td>0,0</td>
</tr>
<tr>
<td>$\text{NO}(\text{Pt})$</td>
<td></td>
<td>$-45,20 \cdot \Theta_O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+9,00 \cdot \Theta_{O_2(b)}$</td>
</tr>
<tr>
<td>$\text{NO}_2 + \text{(Pt)}$</td>
<td>$9,700 \cdot 10^{-1}$</td>
<td>0,0</td>
</tr>
<tr>
<td>$\text{NO}_2(\text{Pt})$</td>
<td></td>
<td>$-67,00 \cdot \Theta_O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+10,75 \cdot \Theta_{O_2(b)}$</td>
</tr>
<tr>
<td>$\text{O}(\text{Pt}) + \text{NO}(\text{Pt})$</td>
<td>$3,680 \cdot 10^{21}$</td>
<td>143,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-42,40 \cdot \Theta_O$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+9,25 \cdot \Theta_{O_2(b)}$</td>
</tr>
<tr>
<td>$\text{NO}_2(\text{Pt}) + \text{(Pt)}$</td>
<td>$9,883 \cdot 10^{22}$</td>
<td>82,13</td>
</tr>
<tr>
<td>$2 \text{O}(\text{Pt}) + \text{(b)}$</td>
<td>$2,000 \cdot 10^{4}$</td>
<td>235,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-128,40 \cdot \Theta_O$</td>
</tr>
<tr>
<td>$\text{O}_2(\text{b}) + 2 \text{(Pt)}$</td>
<td>$9,000 \cdot 10^{-4}$</td>
<td>15,61</td>
</tr>
</tbody>
</table>

1 Einheit: $\frac{1}{\text{s}}$

Tabelle B.2.: Mechanismus B mit bedeckungsabhängiger Platinoxidation
C. Simulationsergebnisse des stationären Verhaltens des DOC 120

Abbildung C.1.: Modellierungsergebnisse des stationären Verhaltens des DOC 120 mit den Mechanismen von Koop und Olsson, 205 ppm NO
C. Simulationsergebnisse des stationären Verhaltens des DOC 120

Abbildung C.2.: Modellierungsergebnisse des stationären Verhaltens des DOC 120 mit den Mechanismen von Koop und Olsson, 410 ppm NO
Abbildung C.3.: Modellierungsergebnisse des stationären Verhaltens des DOC 120 mit den neu entwickelten Mechanismen A und B
C. Simulationsergebnisse des stationären Verhaltens des DOC 120

Abbildung C.4.: Modellierungsergebnisse des stationären Verhaltens des DOC 120 mit den neu entwickelten Mechanismen A und B
Abbildung C.5.: Modellierungsergebnisse des stationären Verhaltens des DOC 120 mit den neu entwickelten Mechanismen A und B
Danksagung

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. Olaf Deutschmann für die Betreuung der Diplomarbeit, das mir entgegengebrachte Vertrauen sowie für die interessante Aufgabenstellung bedanken.

Weiterer Dank gebührt meiner Bürokollegin Lea Burger für die Hilfe in organisatorischen und fachlichen Angelegenheiten sowie ihren Einsatz für gemeinsame Unternehmungen des Arbeitskreises.

Vielen Dank auch an Karin Hauff und Wulf Hauptmann für die Bereitstellung ihrer experimentellen Ergebnisse und interessante fachliche Diskussionen. Weiterhin möchte ich mich bei unserem Administrator Leo Rutz für die Automatisierung der Simulationen bedanken. Lubow Maier danke ich dafür, dass sie stets dazu bereit war, ihre langjährige Modellierungserfahrungen mit mir zu teilen.


Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen als Hilfsmittel verwendet habe.

Karlsruhe, den 26. April 2010