University of Heidelberg, Interdisciplinary Center for Scientific Computing (IWR)

Experimental and Numerical Studies of the Transient Behavior of Catalytic Monoliths

Renate Schwiedernoch, Steffen Tischer, Olaf Deutschmann

Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg Im Neuenheimer Feld 368 • 69120 Heidelberg • phone: 06221 / 54-5013 • fax: 06221 / 54-5050 • e-mail: Renate.Schwiedernoch@pci.uni-heidelberg.de

MONOLITH temperature of the solid structure by a 2D / 3D - heat balance

Time dependent change of temperature, syngas selectivity, and conversions in a Rh/Al₂O₃-monolith

T(adiabatic)

- ⇒ The Simulation is based on a recently developed surface reaction mechanism on Rhodium.[4]
- \Rightarrow Symbols = experimental data simulation Lines =
- ⇒ The numerically predicted exit gas-phase temperature, H_2 and CO selectivities, and oxygen and methane conversion, agree well with the experimental data.
- \Rightarrow At the ignition point only little CO and no H₂ are produced. Then syngas selectivity increases rapidly.
- ⇒ Oxygen breakthrough is caused by relatively large channel diameter of 0.74 mm compared to the 5 mm catalyst length.
- ⇒ No impact of gas-phase reactions were observed at those conditions, however, they become significant at elevated pressure.
- \Rightarrow The experiment and, in particular, the computational tools will be used to study more complex chemical systems and support reactor design and scale-up

- at the beginning.
- \Rightarrow With increasing temperature O₂ is rapidly consumed, and CO is formed at the channel exit. At 10 s first H formation occurs by steam reforming. With higher temperatures H₂ and CO formation increases while CO_2 and H_2O decrease.

- \Rightarrow The surface is mainly covered by oxygen before ignition, which leads to a low reaction rate and
- ⇒ the system is controlled by surface reaction kinetics
- ⇒ The high oxygen sticking leads to Rh-oxide which increases the total amount of oxygen available for later reactions on the surface.
- ⇒ With Increasing temperature the adsorption desorptionequilibrium for oxygen shifts slowly towards desorption resulting in more and more vacancies on the surface. Ignition occurs.
- After ignition, the overall reaction is controlled by radial heat and mass transport.
- Significant oxygen coverage can only be seen at the catalyst entrance where complete oxidation of methane occurs.

time [s]

References:

1100

- [1] D.A. Hickman, L.D. Schmidt, *science* ,**259** (1993);
 - A.S. Bodke, S.S. Bharadwaj, and L.D. Schmidt, *Cat. Lett.* **179** (1998), 138
- [2] O. Deutschmann, L.D. Schmidt, AIChE J., 44 (1998), 2465
- [3] O. Deutschmann, C. Correa, S. Tischer, D. Chatterjee, J. Warnatz, DETCHEM-PACKAGE (Version 1.5.3) http://www.reactive-flows.com;
 - S. Tischer, C. Correa, O. Deutschmann, Catalysis Today, 69 (2001), 57-62
- [4] O. Deutschmann, R, Schwiedernoch, L. Mauer, D. Chatterjee, Natural Gas Conversion VI, Studies in Surface and Catalysis, 136, (E. Iglesia, J.J. Spivey, T.H. Fleisch (eds.)), p. 215-258, Elsevier, 2001;
 - R. Schwiedernoch, S. Tischer, C. Correa, O. Deutschmann, Chem. Eng. Sci. (in press)

Thanks to:

Professor Jürgen Warnatz (Heidelberg University) for his continuous support of our work on heterogeneous catalysis; Professor Jürgen Wolfrum's and Hans-Robert Volpp's (Heidelberg University) help in setting up the experiment is very appreciated.

This Work was financially supported by Deutsche Forschungsgemeinschaft (DFG) and J. Eberspächer GmbH & Co, Esslingen, Germany.