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Abstract

The increasing demand for optimization in process control of reactive systems necessitates the development of fast and reliable
software for the numerical computation of optimal controls taking into account the special structures of the chemical systems
under investigation. A recently developed algorithm based on partially reduced SQP methods is used for the computation of
optimal controls following the direct approach. In this work, this algorithm is coupled with a package for the simulation of
homogeneous reactive systems, which provides the specific routines for the description of the problem at hand. The combined code
takes advantage from the fact that the number of influence variables to be determined is rather low compared with the overall
number of variables. For example, the computation tool developed is applied to study the homogenous oxidative coupling of
methane. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Process optimization; Optimal control; Reactive systems; Partially reduced SQP methods; Methane conversion

www.elsevier.com/locate/compchemeng

1. Introduction

Process optimization plays an important role for the
efficient use of resources or the minimization of unde-
sired by-products in chemical engineering. In this paper
we study in an exemplary manner a homogeneous
reactive system, the oxidative coupling of methane, to
be optimized with respect to the time-dependent process
temperature, as well as to the process duration time. In
a similar way we have considered in Schulz and
Deutschmann (1999) the efficient formation of ketene
from acetic acid. The problem is formulated as an
optimal control problem and then solved in a direct
approach employing partially reduced SQP methods
(Schulz, 1996, 1997). These methods are particularly
appropriate for the problem class at hand, since they
profit from the fact that, although the total number of
variables in the discretized system of equations is large,
the number of real process influence variables is small.

The partial reduction approach is similar to the reduced
SQP methods described in Biegler, Nocedal and Schmid
(1995); Cervantes and Biegler (1998) and Cervantes and
Biegler (2000), but it differs from them in so far as it
provides a wider family of methods, of which the latter
methods are only one member. Its mathematical con-
vergence theory can be found in Schulz (1996).

As can be imagined from the title, this paper is a
report on an interdisciplinary effort on optimization of
reactive systems performed by chemical engineers and
mathematicians. In so far, it can be considered a
promising feasibility study for successful collaboration
beyond the narrow circles of each discipline. Therefore,
the authors have tried to formulate the contents of each
section in such a way that it can be profitably digested
by somebody with an education in either discipline.

The paper is organized as follows. In the next section
we provide a description of the model of the chemical
process to be investigated in this paper. Sections 3 and
4 provide an introduction into the mathematical formu-
lation and practical implementation of partially reduced
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SQP methods for optimal control problems. Section 5
gives numerical results.

The remainder of the current section is devoted to
the motivation for the investigation of the particular
example.

The conversion of methane, the component of natu-
ral gas, has recently received extensive research efforts
because of its potential to synthesize useful chemicals
and reduce pollutant emissions. Until today, natural
gas has mainly been used for combustion process. In
future, natural gas could also serve as a clean alterna-
tive chemical feed stock. Two essential problems using
natural gas are the transportation from the deposits of
natural gas to the consumer and the efficient conversion
to more valuable chemicals such as ethylene (C2H4).

In principle, natural gas can be transported to the
ultimate consumer in pipelines. However, this is often
prohibited by geographical or political circumstances.
In such cases, this resource can currently not be ex-
ploited. The same holds for the natural gas which is set
free in the process of producing crude oil. It is usually
flared and thus constitutes an inacceptable ecological
problem. In recent years, the efforts have been inten-
sified to exploit this kind of natural gas and convert it
into liquid hydrocarbons that can be transported more
easily.

Several routes have been proposed to convert
methane in more useful chemicals which include oxygen
in the process: the oxidative coupling of methane by
co-feeding of methane and oxygen has been investi-
gated in numerous studies (Lane & Wolf, 1988). Here,
a competition between the coupling products, such as
ethylene, and the undesired complete oxidation prod-
ucts, such as CO2 and H2O, occurs. Therefore, appro-
priate temperature and residence time have to be
chosen to achieve high selectivities of the desired prod-
ucts and a high conversion of methane. Catalytic mate-
rials are often used to improve the process. Partial
oxidation of methane in monolithic catalysts at very
short contact times has recently been shown to offer a
promising route to convert natural gas into syngas
which can be converted to higher alkanes or methanol
(Hickman & Schmidt, 1993; Deutschmann & Schmidt,
1998).

These conversion processes can be carried out more
efficiently if the conditions in which they operate are
not chosen by a trial-and-error treatment, but instead
by employing mathematical optimization. So, the most
efficient conditions satisfying certain performance crite-
ria can be computed.

In this work the external conditions such as tempera-
ture and residence time of the homogeneous oxidative
coupling of methane are optimized to achieve maxi-
mum concentration of ethylene.

2. Modeling of the reactive system

We study a homogeneous chemical reactor with con-
stant pressure and given temperature. Hence, the vari-
ables are the species concentrations, the independent
variable is the time, and the temperature serves as a
time-dependent parameter.

A modern approach to model chemically reactive
systems is to use a set of elementary reactions among
all chemical species which are involved into the chemi-
cal system (Warnatz, Dibble & Maas, 1996; Warnatz,
1992). This resolution of the reactive system in elemen-
tary reactions offers the advantage that the reaction
order is directly given by the stoichiometric formulation
of the reaction equation and the reaction rates depend
only on temperature. Hence, the change of the concen-
tration ci of species i is given by:

c; i :=
dci

dt
= fi(c1, ... , cN, T) (2.1a)

= %
NR

j=1

6ij rj 5
N

k=1

ck
6kj (2.1b)

with rj as reaction rates, 6ij as stoichiometric coeffi-
cients, NR as the number of elementary reactions, N as
the number of species. The symbol T denotes the
temperature. The rate coefficients rj are given by a
modified Arrhenius expression:

rj=AjT
bj exp

�
−

Eaj

RT
�

.

For each reaction j the corresponding pre-exponential
factor Aj, the temperature exponent bj and the activa-
tion energy Eaj must be known which is the disadvan-
tage of the detailed chemistry model. Unknown rate
constants can be estimated by using methods as dis-
cussed, e.g. in Bock (1987); von Schwerin (1997) and
Warnatz et al. (1996). However, in the last years,
considerable efforts of several groups have been leading
to formulation of large reaction schemes including the
associated rate expressions (Baulch et al., 1992). Thus,
the oxidation of hydrocarbons can be described by a set
of elementary reactions.

In the chemical process under consideration we want
to maximize the final concentration of a certain species
(called here c1). The temperature profile T(t) in the
reactor is set externally, so that the temperature can be
employed to control the process in order to achieve the
objective. Additionally, the residence time tend for which
the conversion process lasts is free and can be chosen
optimally in order to maximize the concentration of the
desired species.

For practical reasons, there are often constraints in
the design of the chemical reactor which have to be
accounted for in the modelling of the process. Hence,
the mathematical formulation will include the corre-
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sponding constraints, such as an upper (Tu) and lower
(Tl) bound for the temperature. Additionally, the opti-
mal residence time tend must also be restricted by an
upper bound (tendmax

) in order to exclude the case of an
infinite process duration. Furthermore, there are posi-
tivity requirements and an initial value (ci0) has to be
specified for the concentration of each species. Hence,
the formulation of the optimization problem is as
follows:

max
c,T,t end

c1(tend)

subject to

05 tend5 tendmax

T15T(t)5Tu

ci(t)]0, i=1, ... , N

and the dynamics

c; i= %
NR

j=1

6ijAjT
bj exp

�Eaj

RT
� 5

N

k=1

ck
6kj,

ci(t0)=ci0, i=1, ... , N.

The homogeneous oxidative coupling of methane to
higher hydrocarbons such as ethylene (C2H4) and
acetylene (C2H2) is studied by cofeeding methane and
oxygen at methane rich conditions and temperatures
between 800 and 1600 K. For these temperatures a
strong competition occurs between complete and partial
oxidation of methane as well as conversion to higher
hydrocarbons. The first reaction path (CH4+2O2�
CO2+2H2O), which leads to undesired products such
as CO2 and H2O, is favored at higher temperatures and
is extremely exothermic leading to a further tempera-
ture increase (combustion). The partial oxidation of
methane (CH4+1/2O2�CO+2H2) is more favored in
methane rich mixtures. The formed syngas can be ex-
tracted from the mixture and converted into higher
hydrocarbons and methanol. But here, we are inter-
ested in the formation of higher hydrocarbons from
methane by a one-step process: (2CH4+1/2O2�
C2H6+2H2O and CH4+O2�CO2+C2H4+2H2O).
The temperature is the crucial parameter in this reac-
tion system because it must be high enough to achieve
a decent amount of conversion. However on the other
side, a higher temperature favors the formation of CO
and CO2. Hence, the problem is to find a proper
temperature profile which ignites the global reaction
(formation of radicals) while keeping CO and CO2

formation as low as possible.
It is obvious, that the complexity of the oxidative

coupling of methane can only be described satisfacto-
rily by a detailed chemistry model. Therefore, a set of
618 (=NR) elementary reactions among 53 (=N)
chemical species is used. This reaction mechanism in-
cludes hydrocarbons containing up to four carbon

atoms, and it was tested by numerous simulations of
combustion systems and continuous stirred tank reac-
tors (Nehse, 1999). Ethylene (C2H4) is chosen as the
higher hydrocarbon species to be maximized. The tem-
perature bounds are Tl=800 K and Tu=1600 K and
the final residence time of the species in the reactor
should not exceed tendmax

=1s to guarantee a high
enough throughput.

3. Direct PRSQP methods for optimal control
problems

The aim of this section is to provide a brief descrip-
tion of the mathematical background of the code
OCPRSQP, which is used for the core numerical com-
putations in this paper. The problems formulated in the
previous section can be summarized under the follow-
ing general problem class for optimal control problems
in differential algebraic equations (DAE).

For t� [0, tf ], we consider

min f(y(tf), z(tf), tf) objective functional

s.t. y; (t)= f(y(t), z(t), u(t))

0=g(y(t), z(t), u(t))
model DAE of index 1

0=r(y(0), z(0), y(tf), z(tf)) boundary conditions

umin5u(t)5umax control constraints

smin5s(y(t), z(t), u(t)5smax state constraints
(3.1)

for the differential variables y�Rny the algebraic vari-
ables z�Rnz and the control variables u�Rnu. The in-
equalities are to be interpreted component-wise. Here
we assume that the differential-algebraic equation
(DAE), describing the dynamics of the reactive pro-
cesses, is of index at most 1. For ease of presentation
we assume that the functions involved in the formula-
tion posses sufficiently many derivatives. For the treat-
ment of optimization problems in DAE with
discontinuities see, e.g. von Schwerin, Winckler and
Schulz (1996). Although the actual DAE model of the
reactive processes considered in this paper is of index 0
(i.e. pure ordinary differential equations, ODE), we give
this presentation in this slightly more general setting
because that is the complete problem class which the
code OCPRSQP is made for. For the numerical treat-
ment of higher index DAE boundary value problems,
leading to natural invariants, see Schulz, Bock and
Steinbach (1998).

In principle, there are two ways to treat optimal
control problems like the above. One is to use Pon-
tryagin’s minimum principle to formulate necessary
conditions for the solution of the optimal control prob-
lem in the form of a boundary value problem with
jumps and switches. This is called the indirect ap-
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proach. It has the potential of computing the exact
solution up to the discretization error of the resulting
DAE, but it requires good initial guesses for the adjoint
variables and for the bang-(off-) bang switching struc-
ture. Another possibility is to use the so called direct
approach, which is based on an a priori discretization
of the states. Direct methods with a multiple-shooting
discretization and (full) SQP methods for the solution
of the resulting large finite dimensional optimization
problem have been discussed in Bock and Plitt (1984)
or in the more recent version Leineweber, Bock,
Schlöder, Gallitzendörfer, Schäfer and Jansohn (1997).
Here we use a collocation discretization and combine it
with a new reduced SQP type method, thus profiting
from the fact that the number of control variables is
small compared to the number of all variables. This
approach is described in more detail in the following.

For the control discretization, we choose a grid

p :t0=t1B ... Btm= tf, (3.2)

where the control functions are specified piecewise via
free control parameters uj and fixed base functions xj

with local support, u(t)=xj(t, uj) on [tj, tj+1]. In cases,
where tf is left free for optimization, we apply the usual
problem reformulation on a fixed time interval with a
corresponding time-transformation parameter in the
right hand side of the ODE. Thus u is restricted to
some finite-dimensional space of admissible controls
independently on each subinterval. For the sake of
notational simplicity, in the following we always replace
u(t) on [tj, tj+1] by uj.

For the state discretization we choose a possibly finer
sub-grid which for ease of presentation we let coincide
with Eq. (3.2) here. Following the lines of Ascher and
Spiteri (1994), the differential variables are discretized
in the interval [tj, tj+1] by the polynomial of order
k+1

yp(t)=yj+hj %
k

l=1

xjlcl
�t−rj

hj

�
Öt� [tj,tj+1], where

yj :=yp(tj)�R
ny, xjl :=y; p(tj+rlhj)�R

ny,

hj :=tj+1−tj,

cl�Pk+1[0,1]:cl(0)=0, c: l(ri)=
!1, if l= i,

0, else.
(3.3)

The symbol Pk+1[0, 1] denotes the space of polynomi-
als of order k+1 in the interval [0, 1]. Here, we have
chosen the so-called Runge–Kutta representation of
the collocation polynomials. The discretized differential
variables, yp(t), are required to satisfy the system of
differential–algebraic equations in Eq. (3.1) at the col-
location points tjl :=tj+rl(tj+1−tj), l=1, … , k,
where the k numbers 05r1B ... rk51 determine the
convergence and stability properties of the collocation
discretization. Additionally, they have to be continuous
at the grid nodes tj.

The algebraic variables are discretized by the vectors

zjl�R
nz, l=1, ... , k, j=1, ... , m−1

representing the solution values z(tjl) at the collocation
points. A polynomial interpolation of {zjl, … , zjk}
yields an approximation zp(t) in the whole interval
[tj, tj+1].

Thus the collocation discretization is characterized by
the collocated DAE

xjl− f(yj+hj %
k

i=1

xjicl(ri), zjl, u(tjl))=0, l=1, ... , k

(3.4)

g(yj+hj %
k

i=1

xjicl(ri), zjl, u(tjl))=0, j=1, ... , m−1

(3.5)

and the continuity conditions

yj+hj %
k

i=1

xjicl(1)−yj+ l=0, j=1, ... , m−1. (3.6)

Fig. 1 illustrates the discretization described above. The
control discretization in this figure is chosen to be
piecewise linear. The control mesh, pu, and the colloca-
tion mesh, pc, are shown. The tiny ticks above the
t-axis indicate the positions of three Gaussian colloca-
tion points in each collocation interval.

Ultimately, the direct approach results in a large
finite dimensional nonlinear constrained optimization
problem of the general form.

min c(y, u)

s.t. c1(y, u)=0, C1y nonsingular,

c2(y, u)=0,

c3(y, u)]0, (3.7)

where y denotes the discretized differential and alge-
braic variables and u the discretized control variables.
The constraint c1 abbreviates the discretization equa-
tions (Eqs. 3.4–3.6) and c2, c3 are additional constraints
for the states and the controls. In Eq. (3.7) and in the
remainder of the paper, capital C symbols with addi-Fig. 1. Discretization of the optimal control problem.
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tional indices mean derivatives of c with respect to the
variable in the index.

Nonlinear optimization problems of the form Eq.
(3.7) without the constraints c2 and c3 are efficiently
treated by reduced SQP methods in the separability
framework (Gabay, 1982; Kupfer & Sachs, 1993), espe-
cially if the number of y-variables is much larger than
the number of the u-variables — as is typically the case
for chemical process control problems. The idea of
reduced SQP methods in contrast to usual SQP meth-
ods is to use only an approximation of the projected
Hessian of the Lagrangian onto the kernel of the
linearized constraint c1 instead of an approximation of
the full Hessian of the Lagrangian. In order to apply
these methods, one must have a global parameteriza-
tion of the kernel of all active constraints. In the
presence of additional equality, c2 and in particular of
inequality constraints, c3, this global parameterization
is hard to determine, possibly resulting in instabilities
(Gurwitz & Overton, 1989).

Partially reduced SQP methods (PRSQP) as estab-
lished in Schulz (1996) overcome these difficulties by
combining the advantage of reduced SQP methods —
small quadratic subproblems — with the advantage of
full SQP methods — convenient treatment of inequal-
ity constraints. The basic idea of these methods is to
formulate the reduced SQP method only with respect to
the constraints which allow a straight forward parame-
terization (c1), and to treat the remaining constraints
(c2, c3) in the same way as usual SQP methods do, but
reduced onto the kernel of the above constraints.

We define

T1:=
�−C1y

−1C1u

I
n

as the basis of the kernel of C1= [C1yC1u ].
The Lagrangian of the optimization problem Eq.

(3.7) is

L=c(y, u)−c1(y, u)Ýl1−c2(y, u)Ýl2−c3(y, u)Ýl3.

A generic PRSQP method is formulated in the follow-
ing algorithm (additional indices k mean evaluation at
the kth iterate):
1. Start at y0, u0, k :=0
2. compute the reduced gradient g1,k :=

T1,k
Ý 9ck,determine some appproximation Bk of

T1,k
Ý (

2

(2 LkT1,k

3. compute the range space solution of the linearized
constraint c1: Dyk

R= −C1y,k
−1 c1,k

4. solve the quadratic program

minDuk
ÝBkDuk+g1,k

Ý Duk

s.t. C
2,k

DukT1,kDuk+c2,k= −C2,kDyk
R

C3,kT1,kDuk+c3,k]−C2,kDyk
R

in order to obtain Duk and adjoint variables and l3,k

5. determine step Dyk+1:=Dyk
R+T1,kDuk

6. perform step yk+1:=yk+Dyk

7. k :=k+1, go to (1) until convergence

If the approximation of the reduced Hessian Bk is
performed in a sufficiently accurate way, e.g. by the
BFGS update formula, local 2-step-superlinear conver-
gence can be shown. In order to define these update
formulas, one must use the difference in the reduced
gradient of the Lagrangian.
qk := ḡk−gk− [T( 1,k

Ý C( 2,k
Ý −T1,k

Ý C2,k
Ý ]l2,k

− [T( 1,k
Ý C( 3,k

Ý −T1,k
Ý C3,k

Ý ]l3,k,
where a bar over a symbol means evaluation at an
intermediate point (ȳk, ūk), and the difference pk :=
(ȳk, ūk)− (yk, uk).. These two differences (qk and pk) are
used to impose the secant condition Bkpk=qk, which is
at the core of this type of update formula. The interme-
diate point may be chosen to be (yk+1, uk+1), which
defines an update strategy in the spirit of Nocedal and
Overton (1985), or (yk,uk)+ (T1,kDuk, Duk) which defi-
nes an asymptotically correct update strategy. Global-
ization strategies (line-search or trust region strategy)
can also be applied.

The idea of the PRSQP methods formulated above
can be pursued even further. For example, the con-
straint c1 includes collocation conditions for the differ-
ential and for the algebraic variables and continuity
conditions. If we conceive the nonlinear optimization
problem (Eq. (3.7)) in a more generic sense, we may
consider only the collocation conditions or even only
the collocation conditions for the algebraic variables as
the constraint c1 and summarize the remaining dis-
cretization equations in c2. Then, of course, the vari-
ables u include more variables than just the control
variables. Thus, a whole family of methods can be
defined, differing in the degree of reduction, which
includes (full) SQP methods and (fully) reduced SQP
methods as special cases. It is also possible to pick
variants that provide a special block structure in the
reduced Hessian matrix, enabling the incorporation of
the fast structured QP solvers developed in Steinbach
(1995). Another important aspect especially with large-
scale applications for PDE models is the consistent
treatment of inexact solutions of the linear subprob-
lems. This topic in the context of PRSQP methods
together with other practical aspects for discretized
optimization problems is considered in Schulz (1997).

4. Implementation issues

For the numerical solution of the optimal control
problems considered in this paper we couple the
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Fig. 2. Coupling of OCPRSQP and HOMREA.

optimal control problem solver OCPRSQP (O6 ptimal
C6 ontrol problem solver employing a PRSQP method)
and the package HOMREA used to simulate
homogeneous reactive systems (Warnatz et al., 1996).
Some details of this coupling are commented on in
the following.

Those parts of the package HOMREA which
exchange data with the optimization code compute
the reaction rates of the gas phase species as a
function of gas phase concentrations and temperature,
i.e. the code provides the right hand side of equation
(Eq. (2.1a)). Here, three subroutines of the package
HOMREA are used. During the initialization of the
problem the subroutine HORIN1 reads all chemistry
specific data such as the stoichiometric matrix and the
rate coefficients of the detailed reaction mechanism.
Subroutine HORMEC calculates the reaction rates
due to all elementary reactions.

OCPRSQP implements a PRSQP algorithm as
described in the previous section. The variables u in
Eq. (3.7) are the discretized control variables together
with the initial values of the differential variables and
y contains all remaining variables of the nonlinear
program. Correspondingly, the constraints c1 include
the collocation and continuity conditions, whereas c2

and c3 contain the boundary conditions together with
the control and state constraints.

The solution routine applied to the reduced
quadratic programs of step 3 of the algorithm above

is SOL/QPSOL (Gill, Murray, Saunders & Wright,
1983) (in the NAG library Numerical Algorithm
Group (1991) implementation E04NAF). The
stopping criterion for the nonlinear iterations is
defined by a user specified tolerance:) d
dt

F(xk+tDxk)
)
5TOL,

where xk, Dxk denote all variables and increments at
the kth PRSQP iteration and F the Powell exact
merit function (Powell, 1978). This criterion measures
a first order approximation of the decrease in the
exact merit function to be expected from the
increment Dxk. Throughout all numerical studies in
this paper, only one collocation interval is used per
control interval.

Fig. 2 displays the user interface of OCPRSQP and
the coupling with HOMREA in a schematic way. In
order to interact with OCPRSQP, the user must
provide a main program which allocates the necessary
storage space and provides initial guesses for the
variables. This main program calls OCPRSQP as a
subroutine. Furthermore, the user has to provide a
subroutine DAE that evaluates the right hand side of
the model DAE, and a subroutine BNDS which
evaluates the boundary conditions and state
constraints. The latter two routines in turn are called
OCPRSQP if an evaluation of the problem functions
is necessary.
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The coupling with HOMREA is performed in two
ways. On the one hand, it is called from an integration
routine (here LIMEX (Deuflhard, Hairer & Zugck,
1987)) in order to compute good initial guesses for the
initial trajectory in the main program). On the other
hand, it is called from the user provided routine DAE
in order to evaluate the specific right hand side of the
DAE for the reactive systems under consideration.

OCPRSQP necessitates not only the evaluation of the
problem functions themselves but also of their deriva-
tives. As a first approach, this is enabled in the current
version by an intermediate routine implementing a
finite difference approximation of the derivatives in
order to make the coupling of OCPRSQP and HOM-
REA as loose as possible for testing purposes. Thus,
prominent sparsity structures arising in the right hand
side of the DAE are ignored, which accounts for some
loss in the performance of OCPRSQP. The future
implementation of a derivative routine D-HOMREA
providing the sparsity structure of the system DAE
should decrease the computing times considerably. This
latter point is indicated in Fig. 2 by the dashed lines.

5. Numerical results

By using OCPRSQP we were able to solve the de-
scribed optimal control problem for methane conver-
sion to ethylene. 13315 variables occurred in the
optimization problem resulting from 618 reactions and
55 differential equations in 61 control intervals. For
this number of control intervals an error indicator as
described in Schulz, 1996 indicates an error below 10−3

due to the discretization of the optimal control. We
used three Radau points per collocation interval in
order to obtain a stiffly stable discretization of high
order. The algorithm took 50 iterations to converge to
a precision of TOL=10−6, which required a cpu time
of 39 min on a 400 MHz PC with Pentium II processor.

The initial conditions at time t=0 correspond to a
case given in the literature (Zhu, 1993). The concentra-
tion of the species in mol/m3 are CH4: 12.56, O2: 5.15,
H2O: 0.913, CO: 0.350, H2: 0.233, CO2: 0.117, C2H4:
0.06, C2H6: 0.06; the pressure is 1.7 bar. Hence, the
initial CH4/O2 ratio is 2.4.

The initial profiles used for the optimization proce-
dure are shown in the Figs. 3 and 4 on the left side.
Here, a constant temperature of 1052 K is used. The
maximum C2H4 concentration is 0.2 mol/m3, achieved
after a residence time of 0.4 s as shown in Fig. 3.

Optimization leads to an ideal reaction time of tend=
0.65 ms and yields an ethylene concentration of 0.5
mol/m3, which is much higher than that achieved for
the start profile.

The most interesting result is that the optimization
yields a completely different residence time. Fig. 4
shows the concentration profiles of further important
chemical species. After a reaction time of 0.65 ms, the
conversion of methane is 30%, and the C atom selectiv-
ity for the desired C2H4 is 24.1%. Most of the methane
is converted into synthesis gas (CO and H2) with a CO
selectivity of 60%. The other higher hydrocarbons
formed are C2H6 (2.3%) and C2H2 (3.8%). C2H2 is
directly formed from C2H4, which can only be stopped
by a rapid temperature drop after 0.65 ms. The very
undesired complete oxidation products could even by
decreased by the optimization procedure without di-
rectly focusing on that. The CO2 selectivity is 4%.

The results of the optimization show that the maxi-
mum ethylene yield can be achieved if the residence
time is very short B1 ms, and a rather high tempera-
ture is used. Actually, the ideal temperature is at the
upper limit of 1600 K, but only at a very short time,
then the temperature must be decreased very fast to
freeze the non-equilibrium product distribution. The
oxygen conversion is only 60%, which also indicates
that a longer residence time would lead to a higher
amount of complete oxidation products.

Fig. 3. Initial (left) and optimized (right) objective function (C2H4) concentration and control (temperature) as a function of time; time scales are
different.
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Fig. 4. Original and optimized species concentrations.

6. Conclusions

Efficient methods for the numerical computation of
optimal controls for reactive systems are bound to
become of similar importance for the competitiveness
of chemical industry as are now pure numerical simu-
lations of such processes. In the present paper we
present a specific new optimal process control prob-
lem which is solved by a combination of a recently
developed code for the numerical computation of op-
timal control problems with a code for simulation of
the relevant dynamic processes. The combined code is

shown to yield optimal control functions increasing
the efficiency of the process under investigation. As it
is pointed out in Section 4, there is potential for fur-
ther algorithmic improvement of the combined
method with respect to run-times, as well as to the
accessible problem sizes. These further developments
will take even more problem structure into account,
and will thus enable the solution of even larger prob-
lems in less time. Furthermore, the coupling of the
optimization code and a one-dimensional reactive
flow code including detailed gas and surface chemistry
is under development.
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Mischungen. PhD thesis, Universität Heidelberg.

Nocedal, J., & Overton, M. L. (1985). Projected Hessain updating
algorithms for nonlinearly constrained optimization. SIAM Jour-
nal on Numerical Analysis, 22(5), 821–850.

Numerical Algorithm Group (1991). The NAG FORTRAN library
manual, mark 15, Oxford.

Powell, M. J. D. (1977). A fast algorithm for nonlinearly constrained
optimization calculations. In G. A. Watson, Numerical Analysis
Proceedings Dundee 1977 (pp. 144–157). Springer-Verlag.

Schulz, V., & Deutschmann, O. (1999). Process optimization of
reactive systems modeled by elementary reactions. In F. Keil, W.
Mackens, H. Voss, & J. Werther, Scientific Computing in Chemical
Engineering II (pp. 354–361). Springer.

Schulz, V. H. (1996). Reduced SQP methods for large-scale optimal
control problems in DAE with application to path planning
problems for satellite mounted robots. PhD thesis, University of
Heidelberg.

Schulz, V. H. (1997). Solving discretized opmization problems by
partially reduced SQP methods. Computer Visual Science, 1, 2.

Schulz, V. H., Bock, H. G., & Steinbach, M. C. (1998). Exploiting
invariants in the numerical solution of multipoint boundary value
problems in DAE. SIAM Journal on Scientific Computing, 19, 2.

Steinbach, M. C. (1995). Fast recursive SQP methods for large-scale
optimal control problems. PhD thesis, University of Heidelberg.

von Schwerin, M. (1997). Numerische Methoden zur Schätzung von
Reaktions-geschwindigkeiten bei der katalytischen Methankon-
version and Optimierung von Essigsäure- und Methanprozessen.
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