Second International Workshop on CHEMKIN in Combustion, Edinburgh/Scotland, July 30, 2000

IWR

Universität Heidelberg

Catalytic Combustion: State of the art and modeling needs

OLAF DEUTSCHMANN

Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 368, D-69120 Heidelberg, Phone: (+49)-6221-54 8886, Fax: (+49)-6221-54 8884 deutschmann@iwr.uni-heidelberg.de http://reaflow.iwr.uni-heidelberg.de/~dmann

- Flow field simulation

- Catalyst materials and reaction kinetics

Catalytic combustion: Wide variety of applications, mainly driven by environmental concerns

IWR

Universität Heidelberg

Stationary gas turbine

XONON Combustor Catalytica Combustion Systems, Inc.

VOC removal

Catabrun, Taikisha Ltd. www.taikisha.co.jp (15/6/2000)

Domestic gas stove

Interpid II, L&S Fireplace Shoppe, www.lsfireplace.com (15/6/2000)

Portable radiant heater

Catalyst SystemTechnologies, Har Hotzvim, Israel

Catalytic converter

Courtesy of J. Eberspächer GmbH & Co.

Reactive flow in a single channel of a catalytic monolith: Varying levels of modeling the transport processes

	Navier-Stokes	Boundary-Layer	Plug-Flow
Axial convection	yes	yes	yes
Axial diffusion	yes	no	no
Radial diffusion	yes	yes	no

L.L. Raja, R.J. Kee, O. Deutschmann, J. Warnatz, L.D. Schmidt, Catal. Today 59 (2000) 47

Ultra-Low-Emission Gas-Turbine Technology: Modeling of the Catalytic Combustion Stage

L.L. Raja, R.J. Kee, O. Deutschmann, J. Warnatz, L.D. Schmidt, Catal. Today 59 (2000) 47

Universität Heidelberg

Picture: Courtesy of R.J. Kee, Colorado School of Mines

Olaf Deutschmann, Second International Workshop on CHEMKIN in Combustion, Edinburgh/Scotland, July 30, 2000

IWR

Mass transport limitation in a single channel of a catalytic monolith: Caution when using the Plug-Flow model

IWR

Universität Heidelberg

Averaged mass fraction species profiles from the Navier-Stokes, Boundary-Layer and Plug-Flow model Mass-transfer coefficients for Plug-Flow model can be derived from full models

L.L. Raja, R.J. Kee, O. Deutschmann, J. Warnatz, L.D. Schmidt, Catal. Today 59 (2000) 47

Modeling CVD in a rotating disk reactor: Caution when using simplified models

IWR

Universität Heidelberg

Comparison of 3D (MPSalsa) and 1D (SPIN) simulation reveals weakness of the 1D model at low disk spin rates. Both codes use CHEMKIN software.

K.D. Devine, G.L. Hennigan, S.A. Hutchinson, A.G. Salinger, J.N. Shadid, R.S. Tuminaro: High Performance MP Unstructured Finite Element Simulation of Chemically Reacting Flows. Proc. of SC97, San Jose, CA, Nov. 15-21, 1997

Homogeneous ignition in catalytic combustion of methane/air mixtures over platinum

IWR

Universität Heidelberg

Comparison of experimentally observed (PLIF) and numerically predicted (2D NS model with detailed gas phase and surface kinetics using CHEMKIN) OH profiles in a laminar plane channel flow

U. Dogwiler, J. Mantzaras, C. Appel, P. Benz, B. Kaeppeli, R. Bombach, A. Arnold. Proc. Combust. Inst. 27 (1998) 2275

Washcoat pore diffusion in catalytic monoliths: Potential source of transport limitation

IWR

Universität Heidelberg

Washcoat in a single channel of an automotive catalytic converter: Impact of pore diffusion on conversion

IWR

Universität Heidelberg

HC-SCR on Pt/Al₂O₃: Conversion of propane as a function of temperature, simulation vs. experiment

(Chatterjee / Deutschmann / Warnatz, 2000)

Catalytic radiant burner with energy recuperation: Experimental setup

IWR

Universität Heidelberg

J. Redenius, L.D. Schmidt, O. Deutschmann, AIChE J. (submitted)

Catalytic radiant burner with energy recuperation: Simulation uses FLUENT and DETCHEM

J. Redenius, L.D. Schmidt, O. Deutschmann: AIChE J. (submitted)

FLUENT: http://www.fluent.com

DETCHEM: http://www.reactive-flows.com

Modeling surface reactions in catalytic combustion: Kinetics depends on coverage and catalyst structure

IWR

Universität Heidelberg

Assumptions mostly made:

- Adsorbates are assumed to be randomly distributed on the surface (mean field approximation)
- Surface is viewed as being uniform, the local environment is not taken into account (edges, defects, terraces, different structures)

Reaction rate:

$$\dot{s}_{i} = \sum_{k=1}^{K_{\rm s}} \nu_{ik} k_{f_k} \prod_{i=1}^{N_{\rm g}+N_{\rm s}+N_{\rm b}} [X_i]^{\nu'_{ik}}$$

Sticking coefficient:

$$k_{f_i}^{
m ads} \;=\; S_{
m i}^0 \; rac{1}{arGamma^{ au}} \; \sqrt{rac{RT}{2 \; \pi \, M_i}}$$

Rate coefficient:

$$k_{f_k} = A_k T^{\beta_k} \exp\left[\frac{-E_{a_k}}{RT}\right] f(\theta_1, \theta_2...)$$
$$f(\theta_1, \theta_2...) = \prod_i 10^{\eta_i [\theta_i]} [\theta_i]^{\mu_i} \exp\left(\frac{\varepsilon_i \theta_i}{RT}\right)$$
$$k_{r_k}(T) = \frac{k_{f_k}(T)}{K_{c_k}(T)}$$

Binding states of adsorption on the surface vary with the surface coverage of all adsorbed species.

Catalytic combustion of methane over platinum: Proposed scheme of surface reactions

IWR

Universität Heidelberg

D. A. Hickman, L. D. Schmidt, AIChE J. 39 (1993), 1164. O. Deutschmann, F. Behrendt, and J. Warnatz: Catal. Today 21 (1994), 461. Reaction scheme for modeling catalytic ignition of H_a, CO, CH₄ on Pt in SURFACE CHEMKIN format

<u>2'''</u> 4				
Reaction	Α	b	E(J/mol)	Comment
$H2 + 2PT(S) \Rightarrow 2H(S)$	0.046	0.0	0	STICK, FORD /PT(S) 1/
2H(S) => H2 + 2PT(S)	3.70E+21	0.0	67400	COV /H(S) 0 0 -6000/
$H + PT(S) \implies H(S)$	1.00	0.0	0	STICK
O2+ 2PT(S) => 2O(S)	1.80E+21	-0.5	0	DUP
O2+ 2PT(S) => 2O(S)	0.023	0.0	0	STICK, DUP
2O(S) => O2 + 2PT(S)	3.70E+21	0.0	213200	COV /O(S) 0 0 -60000/
$O + PT(S) \implies O(S)$	1.00	0.0	0	STICK
$H2O + PT(S) \Rightarrow H2O(S)$	0.75	0.0	0	STICK
$H2O(S) \Rightarrow H2O + PT(S)$	1.0E13	0.0	40300	
OH + PT(S) => OH(S)	1.00	0.0	0.0	STICK
OH(S) => OH + PT(S)	1.00E13	0.0	192800	
H(S) + O(S) = OH(S) + PT(S)	3.70E+21	0.0	11500	
H(S) + OH(S) = H2O(S) + PT(S)	3.70E+21	0.0	17400	
OH(S)+OH(S) = H2O(S) + O(S)	3.70E+21	0.0	48200	
$CO + PT(S) \implies CO(S)$	0.84	0.0	0	STICK, FORD /PT(S) 2/
CO(S) => CO + PT(S)	1.00E+13	0.0	125500	
$CO2(S) \Rightarrow CO2 + PT(S)$	1.00E+13	0.0	20500	
CO(S) + O(S) => CO2(S) + PT(S)	3.70E+21	0.0	105000	
$CH4 + 2PT(S) \Rightarrow CH3(S) + H(S)$	0.01	0.0		STICK, FORD/ PT(S) 2.3/
CH3(S)+PT(S) => CH2(S)s + H(S)	3.70E+21	0.0	20000	
CH2(S)s + PT(S) => CH(S) + H(S)	3.70E+21	0.0	20000	
CH(S) + PT(S) => C(S) + H(S)	3.70E+21	0.0	20000	
$C(S) + O(S) \implies CO(S) + PT(S)$	3.70E+21	0.0	62800	
CO(S) + PT(S) => C(S) + O(S)	1.00E+18	0.0	184000	

Courtesey of L.L. Raja, R.J. Kee, Colorad School of Mines http://reaflow.iwr.uni-heidelberg.de/~dmann/sm_ch4_ox_1.2_SURFACECHEMKIN

O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz: Proc. Comb. Inst. 26 (1996), 1747

Different kinetics proposed for CH₄ combustion on Pt: Mechansisms are often based on few experimental data

O. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz: Proc. Comb. Inst. 26 (1996), 1747

P.-A. Bui, D.G. Vlachos, P.R. Westmoreland, Surf. Sci. 385 (1997) L1029

Y.S. Seo, S.J. Cho, S.K. Kang, H.D. Shin, Catal. Today 59 (2000) 75.

Universität Heidelberg

Distance along catalyst (cm)

Olaf Deutschmann, Second International Workshop on CHEMKIN in Combustion, Edinburgh/Scotland, July 30, 2000

IWR

Kinetic data for surface reactions at practically relevant conditions and technically used catalysts

Universität Heidelberg

R. Kissel-Osterrieder, F. Behrendt, J. Warnatz, U. Metka, H.-R. Volpp, J. Wolfrum. Proc. Combust. Inst. 28 (2000)

Olaf Deutschmann, Second International Workshop on CHEMKIN in Combustion, Edinburgh/Scotland, July 30, 2000

IWR

Coupling between surface structures and chemical reactions: Dynamic Monte-Carlo simulations

IWR

Universität Heidelberg

Catalytic oxidation of CO on platinum; 2D resolution of the non-homogeneous layers of adsorbed species; experiment vs. simulation

Pt(110), PEEM, 0.2 x 0.3 mm², T = 427 K, p_{O2} = 32·10⁻³ mbar, p_{CO} 3·10⁻³ mbar, Δt = 4.1/ 30 s

S. Jakubit, H.H. Rotermund, W. Engel, A.von Oertzen, G. Ertl. Phys. Rev. Lett. 65 (1990) 3013

Target pattern on Pt(100), Δt = 10 s, 1000 x 1000 lattice, 0.25 x 0.25 mm², T = 490 K, p_{O2}= 50·10⁻³ mbar, p_{CO} 1.5·10⁻³ mbar

R. Kissel-Osterrieder, F. Behrendt, J. Warnatz. Proc. Combust. Inst. 28 (2000)

Intrinsic Low-Dimensional Manifolds of Heterogeneous Combustion Processes

IWR

Universität Heidelberg

Application of the ILDM approach for the reduction of a detailed reaction mechanism describing the oxidation of methane on platinum in a stagnation point flow configuration

The number of relaxed modes (
) increases with time until all ten chemical time scales have relaxed (chemical equilibrium on the surface).

X. Yan, U. Maas. Proc. Comb. Inst. 28 (2000)

Catalyst materials for catalytic combustion: Variation of market prices of noble metals

IWR

Universität Heidelberg

Source: http://www.kitco.com, 20.07.2000

Palladium and metal-substituted hexaluminates: Catalyst materials for catalytic combustion

IWR

Universität Heidelberg

Palladium and metal-substituted hexaluminates are catalysts of great interest for gas turbine applications

Comparison of methane oxidation rate at 400°C, 2% CH_4 in air at 1 atm					
Material	Areal rate (10 ⁻⁷ mol m ⁻² s ⁻²)	Surface area (m² g⁻¹)			
Pd/Al ₂ O ₃ Pt/Al ₂ O ₃ Sr _{0.8} La _{0.2} MnAl ₁₁ O ₁₉	140 50 0.045	2 1 70			

R.A. Dalla Betta. Catalysis Today 35 (1997) 129

Wide variety of studies on the complexity of Pd catalysts exists (phase transformation and activity of Pd/PdO, hydroxide formation, interaction with support, support sintering, vaporization, lightoff, aging)

but no detailed reaction scheme has been established yet

Catalytic combustion: Modeling needs

Universität Heidelberg

- Use of adequate flow field models for the simulation of catalytic combustion devices
- CFD tools including detailed chemistry models are meanwhile available but they are very time-consuming and still have problems solving very stiff systems
- Consideration of pore diffusion in washcoats
- More accurate development of heterogeneous reaction schemes needed (distribution of rxn mechanisms in electronic form, well-defined experiments, accurate description of flow field and potential homogeneous reactions)
- Studies of heterogeneous reaction kinetics at relevant conditions (pressure and materials gap)