Modeling and Simulation of NO$_x$ Abatement with Storage/Reduction Catalysts for Lean Burn and Diesel Engines

Jan Koop and Olaf Deutschmann

Institute for Chemical Technology and Polymer Chemistry
University of Karlsruhe, Germany
Introduction

- Increasing number of vehicles
- More stringent Emission Regulations (specially in Europe and California)

Solution: Lean operated engines → less fuel consumption

- Demand for new types of catalytic exhaust-gas aftertreatment, e.g.
 - Diesel Particle Filter (DPF)
 - Urea-SCR
 - NO$_x$-storage catalyst (NSC)

Exhaust-gas treatment of the E 320 BLUETEC
Introduction

Exhaust-gas treatment of the E 320 BLUETEC

Advanced DeNO\textsubscript{x} catalytic converter

Source: DaimlerChrysler
Function of the NO\textsubscript{x} Storage and Reduction Catalyst

Lean phase – O\textsubscript{2} rich

Rich phase – O\textsubscript{2} deficit
Model Specifications

- Well-defined Model Catalysts: Pt/Al₂O₃ and Pt/Ba/Al₂O₃
- Dimension: 3 cm (Width), 20 cm (Length)
- Realistic Exhaust-gas Composition:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>200</td>
<td>40</td>
<td>12</td>
<td>60</td>
<td>0.04</td>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Rich</td>
<td>200</td>
<td>40</td>
<td>0.9</td>
<td>60</td>
<td>2.1</td>
<td>7</td>
<td>10</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Isothermal Flatbed Reactor
- NOₓ Long-Term Storage Experiments
- Lean/Rich Cycling 300s/15s and 60s/5s (realistic time scale)
- SV= 40000 h⁻¹
- T= 250 - 450°C
TEM-Images of Platinum and Barium Particles

Pt/Ba/Al₂O₃ Catalyst (aged: 4h, 700°C, 10% H₂O)
Hierarchical Modeling of a NSC

Courtesy of J. Eberspächer GmbH& Co
Simulation Program DETCHEM

Storage Mechanism
RESERVOIR
1d-Concentration profile of the storage media (transient, isothermal)

CHANNEL
2D Steady-State Profile for a Laminar Flow using Boundary-Layer-Approx.

Washcoat-Models (optional)

DETCHEM-Library
Reaction Mechanisms
Thermodynamic Properties
Transport Coefficients

Model Level

microscopic

0d
Complexity
2d / 3d

macroscopic

Elementary-step Mechanism on Platinum

HC-decomposition:
- $\text{C}_3\text{H}_6 + 2* \leftrightarrow \text{C}_3\text{H}_6^*$
- $\text{C}_3\text{H}_6^* \leftrightarrow \text{C}_3\text{H}_5^* + \text{H}^*$
- $\text{C}_3\text{H}_5^* + * \leftrightarrow \text{C}_2\text{H}_3^* + \text{CH}_2^*$
- $\text{CH}_3^* + * \leftrightarrow \text{CH}_2^* + \text{H}^*$
- $\text{CH}_2^* + * \leftrightarrow \text{CH}_3^* + \text{H}^*$
- $\text{CH}^* + * \leftrightarrow \text{C}^* + \text{H}^*$
- $\text{C}_2\text{H}_3^* + \text{O}^* \leftrightarrow \text{CH}_3\text{CO}^*$
- $\text{CH}_3\text{CO}^* + * \leftrightarrow \text{CH}_3^* + \text{CO}^*$
- $\text{CH}_3^* + \text{O}^* \leftrightarrow \text{OH}^* + \text{CH}_2^*$
- $\text{CH}_2^* + \text{O}^* \leftrightarrow \text{OH}^* + \text{CH}^*$
- $\text{CH}^* + \text{O}^* \leftrightarrow \text{OH}^* + \text{C}^*$
- $\text{C}_3\text{H}_6 + * + \text{O}^* \leftrightarrow \text{C}_3\text{H}_5^* + \text{OH}^*$

C-O-Reaction:
- $\text{C}_3\text{H}_4^* + 4\text{O}^* + 2 * \rightarrow 3\text{C}^* + 4\text{OH}^*$
- $\text{CO} + * \leftrightarrow \text{CO}^*$
- $\text{CO}_2 + * \leftrightarrow \text{CO}_2^*$
- $\text{CO}^* + \text{O}^* \leftrightarrow \text{CO}_2^* + *$
- $\text{C}^* + \text{O}^* \leftrightarrow \text{CO}^* + *$

N-O-Reaction:
- $2\text{N} \rightarrow \text{N}_2 + 2$
- $\text{NO} + \text{O}^* \leftrightarrow \text{NO}_2^*$
- $\text{NO}^* + \text{O}^* \leftrightarrow \text{NO}_2^*$
- $\text{NO}^* + \text{N}^* \leftrightarrow \text{N}_2\text{O}^*$
- $\text{NO}^* + \text{H}^* \leftrightarrow \text{N}^* + \text{OH}^*$
- $\text{NO}_2^* + \text{H}^* \leftrightarrow \text{NO}^* + \text{OH}^*$

70 Elementary-step Reactions with 35 surface species and 10 gas-phase species

Hydrocarbons

Carbon monoxide

Nitric oxide
Development of heterogeneous reaction mechanisms

Surface science studies (TPD, XPS, AES, TEM, FEM, FIM, STM, SFG …)

Analogy to gas phase kinetics, organometallics

Theory (ab-intio, DFT, BOC-MP, UBI-QEP, TS, Collision)

Mechanism (Idea)

Lab experiments (conversion, selectivity, ignition/extinction temperatures, spatial & temporal profiles, coverages)

Modeling of lab reactors (including appropriate models for gas phase kinetics and heat & mass transport)

Comparison of measured and computed data

Sensitivity analysis & Evaluation of crucial parameters

Reliable mechanism
Lean/Rich Cycle (300s/15s) and Axial Profiles for Pt/Al₂O₃

250°C

Simulation
Experiment

350°C

450°C

NO₂
NO
C₃H₆

NO Mole Fraction
NO₂ Mole Fraction
C₃H₆ Mole Fraction
Simulated Surface Coverages on Platinum

Model enables the prediction of the concentration profiles along the channel length and gives detailed insight into the surface coverages of the lean/rich phase.
Storage Reactions on Barium

- \(\text{BaCO}_3 + 2\text{NO}_2 + \frac{1}{2}\text{O}_2 \rightleftharpoons \text{Ba(NO}_3)_2 + \text{CO}_2 \)
- \(\text{BaCO}_3 + 2\text{NO} + \frac{1}{2}\text{O}_2 \rightleftharpoons \text{Ba(NO}_2)_2 + \text{CO}_2 \)
 \(\text{Ba(NO}_2)_2 + \text{O}_2 \rightarrow \text{Ba(NO}_3)_2 \)
- \(\text{BaCO}_3 + 3\text{NO}_2 \rightleftharpoons \text{Ba(NO}_3)_2 + \text{NO} + \text{CO}_2 \)

Modeled as Global Reactions with Shrinking Core Model, due to Diffusion Limitation during Storage Process
Shrinking Core Model with an Inactive Core

\[R_{\text{diff}} = 4\pi r^2 \ast D_S \ast \frac{\partial C}{\partial r} \]

At the interface Nitrate-Carbonate: \(r = r_{\text{Nitrate}} \)

\[\dot{r}_{\text{NO}_2-O_2-Ba} \ast A_{\text{Particle}} = R_{\text{diff}} \]

Shrinking Core Model with an Inactive Core

\[\frac{1}{2} \text{BaCO}_3 + \text{NO}_2 + \frac{1}{4} \text{O}_2 \Leftrightarrow \frac{1}{2} \text{Ba(NO}_3)_2 + \frac{1}{2} \text{CO}_2 \]

\[\dot{r}_{\text{NO}_2-\text{O}_2-\text{Ba}} = \tilde{k}_f * c_{\text{NO}_2} * c_{\text{O}_2}^{1/4} * \Theta_{\text{BaCO}_3} - \tilde{k}_b * c_{\text{CO}_2}^{1/2} * \Theta_{\text{Ba(NO}_3)_2} \]

Rate coefficients

\[\tilde{k}_f = \frac{k_f}{1 + k_f \cdot \tau} \]

\[\tilde{k}_b = \frac{k_b}{1 + k_f \cdot \tau} \]

\[k_f = A_f \cdot T^\beta \cdot e^{\frac{E_{a,f}}{RT}} \]

\[k_b = \frac{k_f}{K_{\text{eq}}^{\text{NO}_2-\text{O}_2-\text{Ba}}} = \exp\left(-\frac{\Delta_{\text{RH}}}{RT} + \frac{\Delta_{\text{RS}}}{R}\right) \]

Inhibition term:

\[\tau = \frac{l}{D_S} * \frac{r_{\text{Nitrat}}}{r_{\text{tot}}} \]

→ Increasing inhibition term gives rise to a decreased rate coefficient
Reduction Reactions on Barium

- **Carbon Monoxide CO**
 \[
 \text{Ba(NO}_3\text{)}_2 + 3 \text{ CO} \rightarrow \text{BaCO}_3 + 2 \text{ NO} + 2 \text{ CO}_2
 \]

- **Hydrogen H\textsubscript{2}**
 \[
 \text{Ba(NO}_3\text{)}_2 + 3\text{H}_2 + \text{CO}_2 \rightarrow \text{BaCO}_3 + 2\text{NO} + 3\text{H}_2\text{O}
 \]

- **Propylene C\textsubscript{3}H\textsubscript{6}**
 \[
 \text{Ba(NO}_3\text{)}_2 + \frac{1}{3}\text{C}_3\text{H}_6 \rightarrow \text{BaCO}_3 + 2\text{NO} + \text{H}_2\text{O}
 \]

Modeled without Shrinking Core Model, no Diffusion Limitation during Regeneration
Parameterization of Storage/Reduction Reactions on Pt/Ba/Al₂O₃

NOₓ Long-Term Storage Experiments

Simulation
Experiment

Lean/Rich Cycling
300s/15s

→ Parameterization of the Storage Reactions on LTS Experiments and Parameterization of the Reduction Reaction on Lean/Rich Cycles
Lean/Rich Cycle (60s/5s) for Pt/Ba/Al₂O₃ at 350°C

Good agreement between simulations and experiments for both lean/rich cycling and axial profiles.
Lean/Rich Cycling (60s/5s) for Pt/Ba/Al₂O₃

- First three cycles in a row at different temperatures
- Input conditions of 2nd and 3rd are the surface coverages of the previous cycle
- Model is able to predict concentrations profiles even for incomplete regeneration (250 and 350°C)
- Problems with NO regeneration peak at 450°C
Predicted Fraction with $\text{Ba(NO}_3\text{)}_2$ on Pt/Ba/Al$_2$O$_3$ (2. Cycle)

- Predicted fractions during the 2nd lean/rich cycle along the channel length and as a function of cycling time
- Incomplete regeneration at lower temperatures
- Increasing nitrate fraction due to storage reactions
- Non-uniform nitrate distribution along the catalyst length
- Sharp decrease in the nitrate fraction indicates regeneration

\Rightarrow **Model enables detailed insight into the barium nitrate distribution for a simple NSC at various temperatures**
Summary and Conclusion

Summary:
- 2d and transient Model of a NO$_x$-Storage Catalyst
- Effectiveness Factor Washcoat Model
- Realistic Exhaust-gas Composition
- Detailed Reaction Mechanism on the Noble Metal
- Shrinking Core Model for the Storage of Nitrogen Oxides on Barium

Outlook:
- Development and implementation of an Oxygen Storage Model on Ceria
Acknowledgements:

Forschungsvereinigung Verbrennungskraftmaschinen e.V.
(Chairman: Dr. D. Chatterjee, DaimlerChrysler)
for the financial support

Delphi Catalyst
for providing the model catalyst

V. Schmeißer and G. Eigenberger, University of Stuttgart
for sharing the experimental results

Thank You
For your Attention