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Introduction – Why platform molecules?

23.06.20202

 The production of chemicals is primarily dependent on fossil resources
 Fossil resources are valorized and diversified along production chains

 What are the advantages and disadvantages of this value chain?

Simplified current value chain of the chemical industry
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 What are the advantages and disadvantages of this value chain?

Disadvantages
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 Production of numerous different products 
from a small number of molecules

 Well-established processes
 Historically cheap resources

Advantages
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BP Statistical Review of World Energy 2018, https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf 21.11.19 

 The same resources are used in energy and 
transportation sector  strong and growing demand

 Finite resources

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf


Institute for Chemical Technology and Polymer Chemistry (ITCP)
Institute for Catalysis Research and Technology (IKFT)

Platform Molecules II: Synthesis Strategies and Case Studies

Introduction – Why platform molecules?

23.06.20204

 How does that affect the chemical industry?
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 The same resources are used in energy and 
transportation sector  strong and growing demand

 Finite resources  depletion
 Increasing price and finally depletion 

3 % for 
chemical 
industry

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf
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 How does that affect the chemical industry?
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3 % for 
chemical 
industry

Raw material base of the
German chemical industry

Renewable 
resources

Rohstoffbasis der chemischen Industrie, VCI, 2019, 31.03.2020

75 %

11 %

13 %

 Example: crude oil
 92 % usage for the production of chemicals

Although the chemical industry only consumes a small share of the total fossil resources, the production 
of organic chemicals is heavily dependent on them as it is primarily covered by these resources.

https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf
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Petrochemicals

Scarce resource
CO2 pollution
Strategic and political 
weapon
Low security of supply
Cheap

Biomass-derived chemicals

Renewable
CO2 neutral
Can be grown and exploited 
anywhere
High security of supply
Expensive (still)

 Possible solution: change the raw material base of the chemical industry 
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 Important biomass feedstocks: Vegetable oil, algae, ...

P. Anastas and N. Eghbali Chem. Soc. Rev., 2010, 39, 301–312.
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 Establishment of new chemical value chains

Feedstock Commodity 
chemicals Intermediates Products

Biomass Platform 
chemicals Intermediates Products

 Two essential strategies can be distinguished:

Biomass Platform 
chemicals

Feedstock Commodity 
chemicals Intermediates Products

“Drop-in”

“Emerging”: establish new parallel value chains

Biomass Platform 
chemicals Intermediates New products
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 Important biomass feedstocks: Vegetable oil, algae, ...
 Among the most promising is lignocellulose
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R. Musule et. al. J. Wood Sci., 2016, 62, 537

 Different promising conversion strategies (see 1st

platform chemicals lecture)
 The production and further conversion of sugars to 

platform chemicals is particularly promising

Introduction – Establish platform molecules
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 Biomass has more complex structures as compared to currently used fossil (hydro-)carbon feedstock
 Important:

H/C ratio = n H −2n(O)
n(C)

Vennestrom et al., Angew. Chem. Int. Ed. 2011, 50, 10502 – 10509.

 Biomass is ideally suitable for the 
production of chemicals rather than 
transportation fuels.

 Biomass has been used historically for 
the production of chemicals (DuPont)
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 Biomass has more complex structures as compared to currently used fossil (hydro-)carbon feedstock
 Important: H/C ratio

 Different strategies for biomass conversion in so-called biorefineries

Biorefinery

1st generation

2nd generation

3rd generation

Edible crops

Residues and inedible crops

Residues, inedible crops, algae, CO2

 Examples for biorefineries:

Vegetable oil 
biorefinery

Biogas 
refinery

Sugar 
biorefinery

Synthesis gas 
biorefinery

Lignocellulose 
biorefinery

Exercise: To which biorefinery generation 
can these concepts be assigned?
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The lignocellulose biorefinery

23.06.202012

 Main task: partially fragment lignocellulose into its major constituents

R. Musule et. al. J. Wood Sci., 2016, 62, 537

Exercise: In which industry has 
lignocellulose fragmentation been carried 
out on a large scale for a long time?

 Further fragmentation and use of lignin see 1st platform chemicals lecture
 Hydrolysis of sugar-containing parts for the production of sugars and platform chemicals:

Exercise: What are unique features of the 
lignocellulose refinery in terms of 
feedstock and product scope?
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Platform chemicals from cellulosic biomass

23.06.202013

 Promising candidates identified by the US Department of Energy in 2004
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.
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Platform chemicals from cellulosic biomass

23.06.202014

 Promising candidates identified by the US Department of Energy in 2004
 In a revised version, 5-(Hydroxymethyl)furfural (HMF) was added to the list

5-(Hydroxymethyl) 
furfural

J. J. Bozell et al., Green Chem., 2010, 12, 539–554.

O
HO H

O
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Platform chemicals from cellulosic biomass

23.06.202015

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Product Families:
Reduction

THF, BDO, GBL
solvents, fibers

Reductive amination
Pyrrolidones
solvents, water soluble 
polymers

Direct 
polymerization

Polymers
fibers
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202016

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction/reductive 
amination

Diols, diamines
New polyesters and 
polyamides

Reduction
Levulinic acid and   
succinic acid

Direct 
polymerization

Polyesters 
(mostly PEF, 
bottles, 
containers, …)
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202017

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

1,3-Propanediol
Fibers (SORONA®, 
DuPont)

Dehydration
Acrylate family
Contact lenses, super 
absorbers, …
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202018

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

Amino-THF, -butanediol
Amino analogs of 1,4-
dicarboxylic acids

Dehydration
Aspartic anhydride
New field
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202019

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Dehydration

Lactones
Applications: solvents

Direct polymerization
Polyglucaric acids and 
amides
Applications: nylons, 
polymers with new 
properties
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202020

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

Diols, aminodiols
Monomers for polyesters 
and polyamides
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)
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Platform chemicals from cellulosic biomass
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

Methyl butanediol, THF 
family
Monomers

Reductive amination
Pyrrolidones
Solvents, water soluble 
polymers
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

Methyl THF,   
butyrolactone
Solvents, fuels

Dehydrogenation/     
oxidation

Acetyl acrylates, acrylic 
acid
Monomers for co-
polymerization

Condensation
Diphenolic acid
Polycarbonate 
synthesis 
(replacement for 
bisphenol A)
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Direct 
polymerization

Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass

23.06.202023

T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Reduction

Furans
Solvents
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Platform chemicals from cellulosic biomass
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Oxidation

Glyceric acid
Polymers, polyesters

Hydrogenolysis
Propylene glycol
Drying agents,     
antifreeze

Direct polymerization
Branched polyesters     
and polyurethanes
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Dehydration

Isosorbides, anhydro
sugars
Monomers

Bond cleavage
Propylene glycol, lactic 
acid
Drying agents,     
antifreeze

Direct polymerization
Branched   
polysaccharides
Water soluble polymers
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Building Blocks

1,4-diacids (succinic,
fumaric and malic)

2,5-furandicarboxylic acid

3-hydroxy propionic acid

aspartic acid

glucaric acid

glutamic acid

itaconic acid

levulinic acid

3-hydroxybutyrolactone

glycerol

sorbitol

xylitol, arabinitol

Platform chemicals from cellulosic biomass
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T. Werpy et al., Results  of  Screening  for  Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: Washington, DC, 2004.

Product Families:
Oxidation

Xylaric acid
Monomers

Bond cleavage
Propylene glycol,   
ethylene glycol, glycerol
Monomers, antifreeze

Direct polymerization
New (water soluble) 
polymers
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Platform chemicals from cellulosic biomass

23.06.202027

 The production of chemicals from biomass is not only an academic topic! It is also highly relevant for industry!

https://www.upm.com/de/uber-UPM/for-media/releases/2020/01/upm-investiert-in-biochemikalienproduktion-der-zukunft-am-standort-leuna/ accessed on May 25th, 2020

 New chemical plant for the production of 
chemicals from wood biomass with a capacity 
of 220.000 t/a in Leuna.

 500m € investment

https://www.upm.com/de/uber-UPM/for-media/releases/2020/01/upm-investiert-in-biochemikalienproduktion-der-zukunft-am-standort-leuna/
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Case study: furfural

23.06.202028

 1831 distillation of bran with diluted sulfuric acid by Döbereiner
 Best results with hemicellulose-rich materials by dry steaming in the  presence of HCl

 1922 Quaker Oats Cereal Mill 2.5 tons furfural per day

 Cheapest aldehyde in 1934 with 35 – 40 cents / kg  

 Until 1960 DuPont used it for production of nylon

Furfural Adiponitrile Diaminohexane

Nylon

 This process was abandoned when the key intermediate THF could be produced from then cheaper 
petrochemical C4 hydrocarbons.
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Case study: 5-(Hydroxymethyl)furfural

23.06.202029

 Often referred to as the “sleeping giant”
 Dehydration of hexoses has ideal atom economy

O
HO

O

H
5-(Hydroxymethyl)-
furfural (HMF)

Lignocellulose

Depolymerizartion

OHO
HO

OH

OH
OH

Glucose

Dehydration

O

2,5-Dimethylfuran

OH
HO

1,6-Hexandiol
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Levulinic acid

O
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2,5-Bishydroxymethyl-
furan

N
H O

ϵ-Caprolactam

O
H H

OO

2,5-Diformylfuran

O
HO OH

O

5-(Hydroxymethyl)-2-
furancarboxylic acid
(HFCA)

O
HO OH

OO

2,5-Furandicarboxylic 
acid (FDCA)

 As a platform molecule, HMF can be converted in numerous reactions and the 
corresponding product shows broad areas of application 
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Case study: 5-(Hydroxymethyl)furfural

23.06.202030

 Often referred to as the “sleeping giant”
 Dehydration of hexoses has ideal atom economy

 Higher yields obtained when fructose is used instead of glucose

 Fructose is more present in the furanose form
 Cyclic mechanism more likely for fructose

Van Putten et al., Chem. Rev. 2013, 113, 1499−1597.
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Case study: 5-(Hydroxymethyl)furfural

23.06.202031

 Often referred to as the “sleeping giant”
 Dehydration of hexoses has ideal atom economy

 Higher yields obtained when fructose is used instead of glucose
 Higher yields obtained when high boiling organic solvents like DMSO are used

Van Putten et al., Chem. Rev. 2013, 113, 1499−1597.
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Case study: 5-(Hydroxymethyl)furfural

23.06.202032

 Often referred to as the “sleeping giant”
 Dehydration of hexoses has ideal atom economy

 Higher yields obtained when fructose is used instead of glucose
 Higher yields obtained when high boiling organic solvents like DMSO are used

 As with most biomass conversion reactions, selectivity is both critical and the key to success

Van Putten et al., Chem. Rev. 2013, 113, 1499−1597.

…

…

By-products of HMF synthesis

Levulinic acid, formic acid

Unconverted sugars

Remains of the acid catalyst

Humins
…
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Case study: selective oxidation of HMF

23.06.202033

 2,5-Furandicarboxylic acid (FDCA) was part both of the original and revised assessment of the most promising 
chemicals that can be produced from biomass on an industrial scale.

[1] C.M. de Diego, M.A. Dam, G.J. Gruter, US8865921 B2
[2] Avantium. https://www.avantium.com/yxy/markets-partnerships/ 03.01.2019
[3] O. R. Schade, K.F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt,  Green Chem., 2018, 20, 3530
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structural similarity to terephthalic acid
 might replace fossil monomers in polycondensates
 Polyethylene Furanoate (PEF) produced in industrial scale[1]

 attracted investors like Danone or Coca-Cola Company[2]

 similar applications for are possible for HFCA
HFCA
 mostly considered as an intermediate in FDCA synthesis
 few literature reports on targeted synthesis 
 highest yields using heterogeneous Ag-based catalysts[3]

FDCA
 numerous routes published (stoichiometric and 

catalytic, different solvents/oxidants, ….) 
 homogeneous base in water
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 higher activity of ZrO2-supported catalysts
 deactivation upon re-use

 active in HFCA synthesis over broad range of 
reaction conditions, no production of FDCA

 productivity up to 400 molHFCA h-1 molAg
-1

 heterogeneous catalysis on reduced Ag 

 active in FDCA synthesis, HFCA as 
intermediate

 productivity up to 67 molFDCA h-1 molAu
-1

O. R. Schade, K.F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt,  Green Chem., 2018, 20, 3530
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O. R. Schade, K.F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt,  Green Chem., 2018, 20, 3530

 exclusive production of HFCA
 increasing HFCA yield with 

increasing:
Temperature (50 °C)

tR=5 h, p= 10 bar air, 4 eq NaOH, 54 mg catalyst
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 400 molHFCAh-1molAg
-1
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O. R. Schade, K.F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt,  Green Chem., 2018, 20, 3530

 exclusive production of HFCA
 increasing HFCA yield with 

increasing:
Temperature (50 °C)
Base content (1 eq)
Pressure (10 bar)

 400 molHFCAh-1molAg
-1

Ag/ZrO2_dp

 switch in selectivity towards FDCA
 increasing FDCA yield with 

increasing:
Temperature (125 °C)

tR=5 h, p= 10 bar air, 4 eq NaOH, 98 mg catalyst
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O. R. Schade, K.F. Kalz, D. Neukum, W. Kleist, J.-D. Grunwaldt,  Green Chem., 2018, 20, 3530

 exclusive production of HFCA
 increasing HFCA yield with 

increasing:
Temperature (50 °C)
Base content (1 eq)
Pressure (10 bar)

 400 molHFCAh-1molAg
-1

Ag/ZrO2_dp

 Switch in selectivity towards 
FDCA

 increasing FDCA yield with 
increasing:

Temperature (125 °C)
Base content (4 eq)
Pressure (10 bar)

 67 molFDCAh-1molAu
-1

Au/ZrO2_dp

Humins
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O. R. Schade, P.-K. Dannecker, K. F. Kalz, D. Steinbach, M. A. R. Meier, J.-D. Grunwaldt; ACS Omega 2019, 4, 16972–16979.

 So far: active and optimized catalysts for HMF oxidation
 But: use of pure HMF. Remember from slide 32 “As with most biomass conversion reactions, selectivity is both 

critical and the key to success”

By-products of HMF synthesis

Levulinic acid, formic acid

Unconverted sugars

Remains of the acid catalyst

Humins
…

 Investigation of the entire 
process chain

 Use of bio-based HMF 
produced from sucrose

 Direct application of FDCA 
in a novel polymerization 
reaction
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O. R. Schade, P.-K. Dannecker, K. F. Kalz, D. Steinbach, M. A. R. Meier, J.-D. Grunwaldt; ACS Omega 2019, 4, 16972–16979.

 Investigation of the entire process chain
 Use of bio-based HMF produced from sucrose
 Direct application of FDCA in a novel polymerization reaction

By-products of HMF synthesis

Levulinic acid, formic acid

Unconverted sugars

Remains of the acid catalyst

Humins
…
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[1]D. Steinbach, A. Kruse, J. Sauer, P. Vetter, Energies 2018, 11, 645.
O. R. Schade, P.-K. Dannecker, K. F. Kalz, D. Steinbach, M. A. R. Meier, J.-D. Grunwaldt; ACS Omega 2019, 4, 16972–16979.

 Investigation of the entire process chain
 Use of bio-based HMF produced from sucrose
 Direct application of FDCA in a novel polymerization reaction

By-products of HMF synthesis

Levulinic acid, formic acid

Unconverted sugars

Remains of the acid catalyst

Humins
…

0 20 40 60 80 100
Carbon [%]

HMF Furfural Fructose Glucose Levulinic acid
Formic acid Unknown (polymers, other acids,…)

continuous production of HMF 
from sucrose in a tubular reactor[1]
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[1]D. Steinbach, A. Kruse, J. Sauer, P. Vetter, Energies 2018, 11, 645.
O. R. Schade, P.-K. Dannecker, K. F. Kalz, D. Steinbach, M. A. R. Meier, J.-D. Grunwaldt; ACS Omega 2019, 4, 16972–16979.

 Investigation of the entire process chain
 Use of bio-based HMF produced from sucrose
 Direct application of FDCA in a novel polymerization reaction

0 20 40 60 80 100
Carbon [%]

HMF Furfural Fructose Glucose Levulinic acid
Formic acid Unknown (polymers, other acids,…)

continuous production of HMF 
from sucrose in a tubular reactor[1]

4 6 8 10 12 14 16
0

20

40

60

80

100

co
nv

er
si

on
 a

nd
 y

ie
ld

 / 
%

equivalents NaOH

 HMF conversion
 HFCA yield
 FDCA yield
 FDCA selectivity
 C-balance

 

 

125 °C, 40 bar air pressure, 5 h reaction time, 0.3 mmol HMF in 
10 mL reaction solution, 98 mg catalyst (HMF:Au=38 mol/mol)

oxidation of HMF 
produced from sucrose

FDCA can directly 
be used for 

polymerization
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 Investigation of the entire process chain
 Use of bio-based HMF produced from sucrose
 Direct application of FDCA in a novel polymerization reaction
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water
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Reaction pathway

Side reactions

Influence on oxidation reaction

Master thesis W. Naim, „Oxidation von 5-(Hydroxymethyl)furfural zu 2,5-Furandicarbonsäure an heterogenen Katalysatoren in Gegenwart von Begleitstoffen“, 2019.
W. Naim, O. R. Schade, E. Saraçi, J.-D. Grunwaldt „The Influence of HMF production by-products on gold-catalyzed synthesis of FDCA“, submitted for publication.
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Industrial demand fuels economic activity

http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2017/2017-outlook-for-energy.pdf 
http://www.essentialchemicalindustry.org/processes/cracking-isomerisation-and-reforming.html

Gas vs. naphtha as feed for steam cracking

• Lower price of shale-gas 
• Cleaner technology
• Lack of aromatic production
• High consumption demand of aromatics

 Alternative resources to meet aromatics demand

Crude Oil

Demand for aromatics
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Current commercial “green” 
polyethylene terephthalate (PET):

• bioethanol-based ethylene glycol

• ∼30 wt % renewable 

• terephthalic acid (PTA) component 
is still made by liquid-phase 
oxidation of petroleum-derived p-
xylene (PX)

http://www.plasticsnews.com/apps/pbcsi.dll/storyimage/PN/20170302/NEWS/170309969/
AR/0/Nestle-and-Danone-teaming-on-bio-based-PET-bottles.jpg

 High demand for renewable 
terephthalates
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 High demand for renewable polyesters

Drop-in

Emerging
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Sugar

Ethylene

HMF

Isobutylene

fermentation

pyrolysis

FDCA

Isoprene
+

Acrylic acid

4-methyl-3-
cyclohexenecarbox

ylic acid 

cycloaddition

COOR

COOR

+ O2

Bicyclic ether 
cycloadduct

- H2O

Muconic acid 

cycloaddition

cyclohex-2-ene-1,4-
dicarboxylic acid

- 2H2

+ O2

49 %

97 %

19 %

11 %

77 %

80 %

cycloaddition
<15 %

 Purified terephthalic acid (PTA): the most widely produced plastics monomer

Bio-based terephthalic acid synthesis
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