ENERMAT PLATFORM

Materials Synthesis & Processes for Energy

European Institute for Energy Research by EDF and KIT

Development of Fuel Cell Materials and Processes

The ENERMAT laboratory has been created in 2014 in the framework of a collaboration between the Karlsruhe Institute of Technology (KIT) and EIFER. It is located at the Institute for Chemical Technology and Polymer Chemistry (ITCP) at KIT Campus South.

Activities at ENERMAT:

- Promotion of EIFER's expertise in materials science and processes for energy, using conventional and less costly techniques such as screen-printing, and tape casting.
- Development of EDF patents linked to materials and processes before their exploitation phase.
- Evaluation of advanced materials for energy in strategic applications such as electricity production in fuel cell, electrochemical hydrogen production in electrolyzer, gas separation membrane and E-Fuels production.

Download this Fact Sheet

www.eifer.kit.edu/enermat-platform
www.itcp.kit.edu/deutschmann/download
/ENERMAT.pdf

Samples produced in ENERMAT

From Powder to Power

Manufacturing of innovative powder-metallurgical processed materials, covering the whole production process, from the raw material to the finished product in 3 steps.

Powder Synthesis

- Solid-state reaction
- Pechini Process
- Sol-Gel Process

Powder Processing

- Pressina
- Screen-printing (5 to 40 μm)
- Tape-casting (20 to 2000 μm)
- Nano-Infiltration
- Sintering under air (1600°C)

Electrochemical Measurements

- Electrochemical Impedance Spectroscopy (EIS)
- Application profiles: power, temperature, reversibility, e-fuels
- Cell area from 3 to 50 cm², pO₂ pH₂ PH₂O PNH₃ PCO₂
- Gas analysis, Microscopic Analysis

On-Going Public Funded Projects

KIT/CSM (DFG-NSF 2022 - 2025)

Electrochemically enhanced low-temperature catalytic NH₃ synthesis.

ECOMET (BMBF-NWO 2024 - 2028)

Efficient upgrading of CO_2 to methane using steam inside a protonic ceramic electrolysis cell.

HADES (ANR-BMBF 2024 - 2027)

Hydrogen through Ammonia Decomposition from Energy Storage.

PEPPER (EU 2025 - 2027)

Performant and Efficient Planar Proton-conducting Electrolysis Reactor.

References

P. Blanck, E. P. Martin, D. Schmider, R. J. Kee, J. Dailly, O. Deutschmann, (2025). **Electrochemical Ammonia Synthesis in a PCC cell: A Parameter Study of an Iron-Based Electrode**. Journal of The Electrochemical Society, 172, 084507.

S. Davari, R. Chacko, T. Bastek, P. Lott, J. Dailly, S. Angeli, O. Deutschmann (2025). Experimental and microkinetic investigation of thermo-catalytic ammonia decomposition over a Ba-promoted Ru/Ni-BCZY catalyst for use in ammonia-fed PCC. Applied Catalysis A, General 708, 120571.

A. Moranti, J. Dailly, M. Santarelli, F. Smeacetto (2024). **Techno-economic analysis on PCC-based technologies for various materials, configurations, applications and products**. Energy Conversion and Management, 321, 119082.

A. Moranti, F. Riva, T. M. Bachmann, J. Dailly (2024). Environmental performance of a metal-supported protonic ceramic cell and an electrolyte-supported solid oxide cell for steam electrolysis. International Journal of Hydrogen Energy, 92, 1284-1297.

S. Anelli, A. Baggio, D. Ferrero, D. Schmider, J. Dailly, M. Santarelli, F. Smeacetto (2024). Characterization and testing of glass-ceramic sealants for protonic ceramic electrolysis cells applications. Ceramics International, 50, 17520-17531.

Contact

Dr. Julian Dailly +49 (0) 721 6084 3061 Julian.dailly@eifer.org ENERMAT - Institute for Chemical Technology and Polymer Chemistry KIT-ITCP Building 11.21, Room 204-205 Engesserstrasse 20 76131 Karlsruhe, Germany EIFER - Europäisches Institut für Energieforschung EDF-KIT EWIV Emmy-Noether-Straße 11 76131 Karlsruhe, Germany www.eifer.org