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Abstract 
A new computer code has been developed for the direct numerical simulation of certain aspects 

of three-dimensional bubble dynamics in a fluid. This code combines the Volume-of-Fluid method 
for tracking the gas-liquid interface with a new, piecewise linear, interface reconstruction algorithm 
called EPIRA. Results are presented for single gas bubbles rising in a plane vertical channel filled 
with a liquid. Four distinct combinations of Eötvös and Morton numbers, in the range 0.2 ≤ EöB ≤ 
243 and 2.5·10-11 ≤ M ≤ 266, are considered. Three of these combinations yield a spherical, 
ellipsoidal, and oblate ellipsoidal cap bubble, respectively, each rising steadily on a rectilinear path. 
For EöB = 3.07 and M = 2.5·10-10, a bubble with an irregular, oscillating wobbling shape rising on an 
irregular spiral path, is obtained. Even though the simulations were carried out with a gas-to-liquid 
density ratio of 0.5, all of the numerical results for bubble shape, wake, and path characteristics are 
in close agreement with the experimental results for gas-liquid systems characterized by the same 
values for EöB and M, but having density ratios much smaller than 0.5. 
 
1. Introduction 

Although the fundamental physical understanding of the rise of gas bubbles in a continuous 
liquid is of significant practical importance for a variety of engineering applications, neither the 
interactions between bubbles rising in clusters nor the bubble-induced pseudo-turbulence (i.e., the 
generation of velocity fluctuations by bubbles and their wakes in an otherwise laminar flow) are 
fully understood yet. Modeling the bubble-induced pseudo-turbulence with the current generation of 
Computational Fluid Dynamics (CFD) codes requires detailed information about the full three-
dimensional (3D) velocity field close to the bubble and in its wake. Such information, though, 
cannot be obtained experimentally yet, since even advanced experimental techniques, such as 
particle-image-velocimetry (PIV), can at best yield two-dimensional (2D) projections of the flow at 
any given instant in time (Brücker, 1999). 

In the absence of detailed experimental information, the direct numerical simulation of the flow 
modeled by the Navier-Stokes equation can provide, in principle, a full 3D time-resolved velocity 
data field. The leading methods currently used for detailed numerical simulations of the 
hydrodynamics of single or multiple bubbles rising in a continuous liquid, where the gas-liquid 
interface is deformable, are the front-tracking method (Tryggvason et al., 1998), the level-set 
method (Sethian, 1999), and the Volume-of-Fluid (VOF) method (Kothe, 1998; Scardovelli and 
Zaleski, 1999) together with finite-difference discretization of the Navier-Stokes equation.  

However, there are no reports in the open literature, to our knowledge, of applying the numerical 
methods mentioned above to 3D-problems involving Morton numbers M below M ≈ 10-10, where M 
is defined as  
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with g,,, σµρ  representing density, dynamic viscosity, surface tension, and gravity, respectively. 
The superscript (*) denotes dimensional quantities, while the subscripts l and g denote the liquid 
(continuous) and the gas (dispersed) phases, respectively. Most gas-liquid systems of practical 
relevance are characterized by very low Morton number; for example, M ≈ 10-11 for air bubbles in 
water, while the gas-liquid density ratio is about 1/1000. 

To simulate systems characterized by very low Morton numbers, we have developed a new 
numerical method, which combines the Volume-of-Fluid interface tracking technique with the 
solution of the non-dimensional incompressible Navier-Stokes equations using a finite volume 
formulation on a staggered grid. For the interface reconstruction, we have developed a new 
piecewise linear algorithm (EPIRA), which reconstructs a linear three-dimensional interface (i.e. a 
plane) exactly. The purpose of this paper is to present our new numerical method together with 
illustrative 3D-results for single bubbles rising in a computationally periodic, plane vertical channel, 
for a gas-liquid density ratio of 0.5. In particular, we present results for the case M = 2.5·10-10, 
which show a shape-oscillating bubble in the “wobbling” regime, rising on an irregular spiral. 
 
2. Governing equations 

Since we use a finite volume method, we derive the governing equations by averaging the local 
equations over a volume V. With f denoting the liquid volumetric fraction within V, we define the 
mixture density and viscosity, respectively, as 
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and also define the center of mass velocity as 

( ) *

*
g

*
g

*
l

*
l**** ufuf

w,v,uu
ρ

ρρ )(1T −+
≡= . (4)

Both the liquid and gas are assumed to be incompressible Newtonian continua; furthermore, we 
assume that there is no slip between the phase velocities in interface mesh cells. Thus, the non-
dimensional continuity and Navier-Stokes equation can be written as 
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where 2ms819 −== .gg ** , and where the various non-dimensional quantities are defined as 
follows: 
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The derivations leading to Eqs. (5) and (6) are detailed in the paper by Wörner et al. (2001, this 
conference). The dimensionless groups in Eq. (6) are the reference Reynolds, Eötvös, and Weber 
numbers, respectively, defined as 
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By replacing, in Eq. (8), L*
ref by the bubble equivalent diameter d*

e and, respectively, U*
ref by the 

terminal rise velocity UT
* of the bubble, we obtain the bubble Reynolds (ReB), bubble Eötvös (EöB), 

and bubble Weber number (WeB). The Morton number is related to the Reynolds, Eötvös and Weber 
numbers by means of the relation 
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The last term on the right-side of Eq. (6) is due to surface tension; in that term, aint, κ , and n  
denote the (non-dimensional) interfacial area concentration, mean interface curvature and mean unit 
normal vector to the interface within the averaging volume V.  

The above set of equations is completed by the transport equation for the liquid volumetric 
fraction 
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which can be derived from the continuity equation for the liquid phase. 
 
3. Numerical Method 

3.1. EPIRA algorithm for interface reconstruction 

We have developed a new algorithm, called EPIRA, which yields a linearly-accurate interface 
reconstruction on a 3D structured orthogonal non-equidistant fixed grid. The acronym EPIRA 
stands for “Exact Plane Interface Reconstruction Algorithm”. The algorithm belongs to the class of 
PLIC (Piecewise Linear Interface Calculation) methods. EPIRA reconstructs a plane 3D-interface 
exactly, regardless of its orientation; in this sense, EPIRA is second-order accurate. In this sub-
section, we provide a short description of the EPIRA reconstruction step. Additional details can be 
found in the works of Sabisch et al. (1999) and Sabisch (2000). 

In EPIRA, we assume a functional interface of zero thickness, which can locally be described by 
a single valued height function ξ = h(ζ ,η), where (ζ ,η ,ξ ) define a local Cartesian coordinate-
system. Expanding h(ζ ,η) in a Taylor-series around the point 0 ≡ (ζ0 ,η0) yields 
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We approximate locally the interface by a plane by retaining only the first three terms on the right-
side of Eq. (11), namely: 
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This approximation is reasonable if (ζ ,η) is close to (ζ0 ,η0) or if the interface curvature is small.  
To reconstruct the interface orientation and position, we need to determine a vector n = (nζ, nη, 

nξ)T normal to the interface, and a point (bζ, bη, bξ) within the interface. For this purpose, we 
consider a rectangular cell (i,j,k) with a liquid volumetric fraction satisfying 0 < fi,j,k < 1. For each of 
the six faces of the interface-cell (i,j,k), we check to see if the respective face happens to be a 
gas/liquid (g/l)-interface-face. Thus, face E(ast) located at xi+1/2 is a g/l-interface-face if 0 < fi+1,j,k < 
1; the faces W(est) at xi-1/2, N(orth) at zk+1/2, S(outh) at zk-1/2, F(ront) at yj-1/2 and B(ack) at yj+1/2 are 
checked similarly. 

Next, we determine a tangential vector for each g/l-interface-face, as illustrated in Fig. 1 for face 
E, where, without loss of generality, we assume that the local co-ordinate system (ζ ,η ,ξ ) coincides 
with the global co-ordinate system (x,y,z). If the plane h(ζ ,η) does not cut the upper or lower faces 
of the adjacent cells (i,j,k) and (i+1,j,k), then Ni,j,k, Si,j,k, Ni+1,j,k and Si+1,j,k are not g/l-interface-faces. 



  

 
It hence follows that 
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Inserting Eq. (12) in Eq. (13), performing the integrations, and subtracting fi,j,k from fi+1,j,k yields 
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Since αE represents the slope of the interface in the x-direction, it follows that the unit tangential 
vector Et  is obtained as 
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Note that this tangential vector is exact for any planar interface, if the lower and upper integration 
limits in Eq. (13) are correct. As mentioned above, this requires that Ni,j,k, Si,j,k, Ni+1,j,k and Si+1,j,k are 
not g/l-interface-faces. Otherwise, the integration limits must be adjusted to account for the inter-
sections of the g/l-interface with the lower upper cell faces, respectively. Such adjustments would 
require the consideration of several distinct situations and would be computationally ineffective. 

Figure 2a depicts a case where, even though the face Ni,j,k is a g/l-interface-face, αE can still be 
determined exactly. For this purpose, we extend the domain for computing αE by considering a pair 
of double-cells, (i,j,k)+(i,j,k+1) and (i+1,j,k)+(i+1,j,k+1), respectively (see Fig. 2b). For each 
double-cell, Eq. (13) can be used again to obtain αE and Et  exactly, by replacing ∆zk with ∆zk+∆zk+1 
on the right-side of Eq. (13), and fi,j,k+fi,j,k+1 (instead of fi,j,k) and fi+1,j,k+fi+1,j,k+1 (instead of fi+1,j,k) on 
the respective left-sides. A similar procedure is used when Si,j,k or Si+1,j,k are g/l-interface-faces. 

 

Fig. 1: 
Cells (i,j,k) and (i+1,j,k) 
with plane h(x,y) repre-
senting the interface. The 
fluid is below h(x,y). 

Fig. 2: 
a): Example where Ni,j,k
is a g/l-interface-face. 
b): An extension of the 
left and right volumes 
is performed to obtain 
the slope αE exactly. 

a) 

b)



  

When Ni,j,k+1, Ni+1,j,k+1, Si,j,k-1 or Si+1,j,k-1 are g/l-interface-faces, one upper and/or lower extension 
is still insufficient to obtain αE exactly. Since we do not wish to lose the locality of the 
reconstruction, though, we perform at most one extension above and/or one below the basic pair of 
cells. If this is not sufficient to determine a value for αE, then we guess a value for it by setting the 
slope β in Eq. (12) to zero and thereby simplifying the 3D-problem to a 2D one. By considering four 
possible different cases for the resulting 2D-problem (see Figure 3), the slope αE is determined 
analytically via a case check diagram according to the 2D FLAIR algorithm of Ashgriz and Poo 
(1991), which was extended by us to non-equidistant grids. Using this approximate (2D-) value for 
αE in Eq. (15) yields an approximate value for Et . 

 
Thus, a unit tangential vector is computed using the above procedure at each of the (minimum 

three and maximum six) g/l-interface-faces of an interface mesh cell. The unit tangential vector thus 
computed is flagged as exact, if the slope is determined via Eq. (14), or as inexact, if it is computed 
using the extended 2D FLAIR algorithm. For computational reasons, we set the tangential vector to 
the null vector when a face is not a g/l-interface-face. 

From the tangential vectors at the different faces of cell (i,j,k), we compute a cell-centered unit 
normal vector, k,j,in , for each interface cell. We demonstrate this computation for cell (i,j,k), as 

illustrated in Fig. 1, where Nt  and St  are zero, whereas Et , Wt , Ft  and Bt  are not. For each co-
ordinate direction, we determine a representative tangential vector as follows: if Et  and Wt  are 
marked with the same flag (i.e., both exact or both inexact), then EWt  is obtained by taking their 

average, namely ( ) WEWEEW ttttt ++= . Otherwise, either Et  or Wt  can be selected as 

representative, although the exact one is to be preferred. We flag EWt  as exact if Et , Wt , or both are 
exact. The other representative unit tangential vectors, NSt  and FBt , are determined similarly. Using 
these three representative unit tangential vectors, the (minimum one and maximum three) 
preliminary unit normal vectors are computed as shown below: 

EWFB

EWFB

FBNS

FBNS

NSEW

NSEW

tt
ttn,

tt
ttn,

tt
ttn

×
×=

×
×=

×
×= 321 . (16)

If necessary, each of these preliminary normal vectors is re-orientated to point inside the fluid. By 
averaging these preliminary normal vectors using the same steps as used for obtaining the 
representative tangential unit vectors, we obtain, ultimately, the representative cell-centered unit 
normal vector. For the situation illustrated in Fig. 1, the vector NSt  is zero, which implies that only 
the normal vector 3n  is non-zero; no averaging is required. 

By shifting iteratively the interface-representing plane until the correct liquid volumetric fraction 
within the mesh cell is recovered, the interface reconstruction is ultimately completed by 
determining the point (bζ, bη, bξ). 

The fluxes of the liquid phase across the faces of the cells are computed in the advection step 
using the naive unsplit method. The liquid fluxes in the three co-ordinate directions are computed 
simultaneously, based on only one reconstruction step for each time step. A cuboid of influence is 
defined close to each face; the cuboid’s base is the respective cell-face and its depth is the respective 
face-centered velocity multiplied by the time step width. 

Fig. 3: Four cases 
of 2D FLAIR 
algorithm. 



  

When the flow is oblique to the cell faces, the three cuboids of influence overlap in the naive 
unsplit method, and liquid volume may be advected twice. In such a case, as well as in cases of low 
bubble resolution and/or high interface curvature, it can happen that, after the advection step, there 
remain interface-cells containing a very small fraction of fluid, ε, or gas, 1-ε, and only two g/l-
interface-faces. Such a configuration is not meaningful for EPIRA, so we redistribute the fluid or 
gas to neighboring interface-cells. The value of ε is related to the residuum of the divergence of the 
velocity field, which is set to 10-5 in our simulations. 
 
3.2.  Solution strategy 

The EPIRA algorithm has been implemented in our in-house code TURBIT-VOF, which solves 
the conservation equation for f together with the non-dimensional continuity and the Navier-Stokes 
equations shown in Eqs. (5) and (6). TURBIT-VOF is designed to simulate flows in plane channels. 
It employs a staggered grid, uniform in the x- and y-directions (parallel to the walls), but possibly 
non-uniform in z-direction (normal to the walls). The solution strategy is based on a projection 
method. The predictor step includes the convection, friction, and buoyancy terms, namely 
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This predictor step is performed by an explicit third order Runge-Kutta scheme as sketched below: 
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For the intermediate time levels, we set 
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Treating the pressure term and surface tension term implicitly, the corrector step is 
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Applying the divergence operator to Eq. (20) and introducing the continuity equation 01 =⋅∇ +n
mu  

yields the Poisson equation 
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A Conjugate Gradient solver (Schönauer et al., 1997) is used to solve the above Poisson equation. 
Alternatively, the buoyancy term can be included in the corrector step rather than in the predictor 
step; we found that this procedure is numerically advantageous for free surface flows. 
 
3.3.  Spatial discretization on a staggered grid 

A second order central difference scheme is used to discretize the diffusive and non-linear 
convective terms in the Navier-Stokes equation. For treating the convective terms, we are currently 
developing a high resolution WENO (Weighted Essentially Non Oscillatory) discretization scheme 



  

with one-dimensional reconstruction along each co-ordinate direction. WENO shock capturing 
schemes were originally developed for compressible single phase flows. The WENO scheme 
intended for TURBIT-VOF is envisaged to minimize the numerical smearing when computing the 
convective terms, for low gas/liquid density ratios, within the three sub-integration steps of the 
Runge-Kutta time integration procedure. For the gas/liquid density ratio of 0.5 considered in the 
present paper, we found that the results obtained with the central difference scheme agree well with 
those obtained with the WENO scheme presently implemented in TURBIT-VOF. 

Within the staggered grid used in TURBIT-VOF, the density, viscosity and the liquid volumetric 
fraction fi,j,k are cell-centered, while the control volumes for the three components of the Navier-
Stokes equation are shifted by half a mesh-width to obtain the velocity components as ui+1/2,j,k, 
vi,j+1/2,k, wi,j,k+1/2. For the spatial discretization of the various terms in the Navier-Stokes equation, 
though, we need velocities at centered positions, and the density and viscosity at shifted positions, 
respectively. In the current version of TURBIT-VOF, which does not consider mass transfer, the 
velocities at centered positions are obtained from a linear interpolation, which is justified since the 
velocity is continuous across the interface (in the absence of mass transfer). The density and 
viscosity, however, are discontinuous across the interfaces, so that a linear interpolation may 
introduce large errors. For this reason, we compute these quantities by a different method as 
follows: taking into account the actual interface location in cell (i,j,k) and cell (i+1,j,k), we compute 
the liquid volumes within the half-cells [xi,j,k, xi+1/2,j,k] × [yi,j-1/2,k, yi,j+1/2,k] × [zi,j,k-1/2, zi,j,k+1/2] and 
[xi+1/2,j,k, xi+1,j,k] × [yi,j-1/2,k, yi,j+1/2,k] × [zi,j,k-1/2, zi,j,k+1/2], respectively. We then add both liquid volumes 
together and divide the resulting sum by the total volume of both half-cells to obtain fi+1/2,j,k. Having 
thus obtained fi+1/2,j,k allows us to compute ρi+1/2,j,k. The quantity fi+1/2,j+1/2,k is computed similarly, by 
considering four quarter-cells.  
 
3.4.  Discretization of the surface tension term 

In this subsection, we illustrate the dicretization procedure for the first component of the source 
term due to surface tension in the Navier-Stokes equation; the other components are obtained 
similarly. In principle, we must compute source terms of the form 
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The EPIRA reconstruction algorithm yields the interface unit normal vector at cell centers (i,j,k). 
The staggered interface unit normal vector is obtained from the interpolation 
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Note that k,j,in  is initialized as the null vector in any cell which is not an interface mesh cell. Next, 
we follow Brackbill et al. (1992) to compute the curvature from the gradient of the unit normal 
vector, n⋅−∇=κ . For the first component of the Navier-Stokes equation, this procedure gives 
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The staggered values of the unit normal vector in Eq. (24) are obtained by interpolation as: 
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The interfacial area concentration aint;i+1/2,j,k is computed by adding the areas of the interfaces in the 
two half-cells [xi,j,k, xi+1/2,j,k] × [yi,j-1/2,k, yi,j+1/2,k] × [zi,j,k-1/2, zi,j,k+1/2] and [xi+1/2,j,k, xi+1,j,k] × [yi,j-1/2,k, 
yi,j+1/2,k] × [zi,j,k-1/2, zi,j,k+1/2], and dividing the result by the total volume of both half-cells. 



  

3.5.  Code verification 

Several prototypical interfacial problems have been considered, as detailed by Sabisch (2000), to 
verify TURBIT-VOF. E.g., the computational accuracy of the surface tension model has been 
verified by simulating capillary waves. In this benchmark problem, the surface tension acts as the 
sole driving force on an initially sinusoidal interface at rest. The temporal development of the 
oscillation damped by viscosity has been computed by TURBIT-VOF, and it agrees well with the 
respective analytical solution. Furthermore, the calculation of the buoyancy force has been verified 
by simulating both gravity waves and the Rayleigh-Taylor instability, starting with a sinusoidal 
interface initially at rest. Also in the case of gravity waves, the computed oscillation of the interface 
damped by viscosity agrees well with the respective analytical solution. Both 2D and 3D 
configurations have been considered for computing the respective Rayleigh-Taylor instabilities. The 
computed velocities of the rising “bubble” and the falling “finger” are in excellent agreement with 
values from literature. As detailed by Sabisch (2000), very good agreements between numerical and 
analytical solutions have also been obtained for other interfacial problems used to verify the new 
numerical procedures implemented in TURBIT-VOF. 

 
4. Simulation parameters 

4.1. Physical parameters 

The relevant physical quantities for a bubble rising with its terminal velocity through an infinite 
liquid are included in the following equation (Grace, 1973) 
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The above equation may be rewritten in terms of five independent dimensionless groups as 
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simulations reported in this paper, EöB, M, Γρ and Γµ have been held fixed, and the simulations were 
performed for four different combinations of (EöB, M) as shown in Table 1. According to the “ReB 
versus EöB” diagram of Clift et al. (1978) we expect for cases , , and  to obtain a bubble with 
a steady shape (ellipsoidal, oblate spherical cap, and spherical, respectively), rising steadily along a 
rectilinear path. The bubble for case  is expected to be in the “wobbling” regime. 

For all bubble simulations presented in Table 1, the density ratio is Γρ=0.5 and the viscosity ratio 
is Γµ=1. Setting hmin=mink(∆x, ∆y, ∆zk), the convective, viscous, and capillary time step criterion are 
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Table 1: Physical and numerical parameters for TURBIT-VOF simulations 

Case EöB M Reref Weref Lx Ly Lz Nx Ny Nz de 
 (a) 3.07 3.1·10-6 100 2.5 2 1 1 128 64 64 0.25 
 (b) 3.07 3.1·10-6 100 2.5 1 1 1 64 64 64 0.25 
 (c) 3.07 3.1·10-6 200 5 ½ ½ 1 64 64 128 0.125
 (d) 3.07 3.1·10-6 100 2.5 1 1 1 128 128 128 0.25 
 243 266 13.2 45.8 1 1 1 64 64 64 0.25 
 3.07 2.5·10-10 999.6 2.5 1 1 1 64 64 64 0.25 
 0.2 2.5·10-11 1050 2.5 1 1 1 64 64 64 0.25 



  

The formula for ∆tµ in the inequalities above indicates that low values of Γρ lead to stiff 
problems, in the sense that the diffusive time scales of the gas and liquid phases become 
significantly distinct from each other. For cases  (a-c), for example, ∆tCFL, ∆tµ, and ∆tσ are of 
same order of magnitude (∆tmax ≈ 0.002) when Γρ = 0.5. For a smaller value of Γρ, the viscous time 
step criterion will become the most stringent among all. Due to the discontinuity at the interface, 
very low density ratios also produce numerical difficulties when computing the convective terms, 
and would therefore likely need a much higher mesh-cell resolution of the bubble than is necessary 
for Γρ = 0.5. 
 
4.2. Grid parameters, boundary conditions, and initial conditions 

Numerical simulations have also been performed for a bubble rising between two parallel plane 
vertical walls, using a non-dimensional wall distance Lz = L*

z / L*
ref = 1 and no slip boundary 

conditions at z=0 and z=1. In the vertical (x) and span-wise (y) directions, we have used periodic 
boundary conditions, with periodicity lengths Lx and Ly, respectively. The orientation is such that the 
gravity vector points in the negative x-direction. Thus, the results to be presented in section 5 below 
will refer to the rise of a regular array of bubbles, as opposed to the rise of a single bubble. 

The simulations were performed on uniform grids consisting of Nx·Ny·Nz cubical mesh cells. As 
Table 1 shows, most of the simulations were carried out for a cubical computational domain 
discretized by 64x64x64 mesh cells, where L*

ref = 4m and U*
ref = 1ms-1. This discretization allows a 

16-mesh-cells resolution of the non-dimensional bubble equivalent diameter de = 0.25, and 
corresponds to a total gas content of about 0.8%. 

The periodic boundary conditions used in the numerical simulations mentioned in Table 1 allow 
only a qualitative comparison with experiments for single bubbles rising in an infinite liquid. Also, 
since we considered a finite channel, the function F* in Eq. (26) would need to include additional 
dimensional quantities, since, for bubbles rising in a channel or a pipe, U*

T  is also influenced by the 
ratio of the bubble equivalent diameter to the channel hydraulic diameter. In our simulations, this 
ratio is λ = 0.5 de Lz, and has typically the value 1/8. According to Clift et al. (1987, formula 9-35), 
the terminal-rise velocity in this case is reduced by less than 3% due to wall effects, as compared to 
the terminal-rise velocity of a freely rising bubble. Therefore, we can neglect the wall effects for the 
cases presented in Table 1. 

For all of the simulations of case , the fluid and gas were initially at rest. To save CPU time, 
the simulations for cases , , and  were not initialized from stagnant conditions but from the 
final flow state of run  (b). The computations were performed on a single processor of a vector-
parallel SNI VPP 300. Due to its transient nature, case  is the most expensive computationally; the 
total CPU time required was about 100 hours. 
 
5. Results 

In the following two subsections, we assess the influence of the density ratio of 0.5 used in our 
simulations by comparing the numerical results for cases  and  with experimental data for gas-
liquid systems in which the Morton and Eötvös numbers were the same as used in the numerical 
simulations, but where the density ratios were of the order of 10-3. In subsection 5.3, we discuss 
results for case , which simulates a wobbling bubble. For case , the Morton number corresponds 
to that of an air-water system. Additional details for this case are given by Sabisch (2000), who 
obtained a steady, almost spherical, bubble that rises rectilinearly. 
 
5.1. Ellipsoidal bubble (EöB = 3.07, M = 3.1·10-6) 

Based on experiments for fifty-four dispersed-continuous phase systems, Wellek et al. (1966) 
derived empirical relations for the eccentricity E of non-oscillating bubbles and drops, over a wide 
range of particle Reynolds numbers. For EöB < 40 and M ≤ 10-6, they obtained the relation  
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In our simulation, we have obtained (after a transient from the initial spherical shape) an ellipsoidal 
bubble rising steadily on a rectilinear path, with an confined recirculation zone at its rear. The 
bubble’s eccentricity was obtained as E = 0.71 for case  (a); this value agrees well with the value 
E = 0.72 obtained from Eq. (29) for EöB = 3.07. Also, we computed the bubble Reynolds number as 
ReB = 61.5, and this value lies well within the range of 50 to 70, as observed in experiments (Clift et 
al., 1978). From these results, we concluded that the density and viscosity ratios play only minor 
roles in this case. 

Cases  (b) and (c) depict the influence of the size of the computational domain, since we use 
the same bubble resolution as in case  (a). The ratio Lx / de is a measure for the influence of the 
periodic boundary conditions on the vertical distance between consecutive bubbles. The lower the 
ratio Lx / de, the stronger the influence of the periodic boundary conditions. Table 2 shows that 
reducing the ratio Lx / de = 8 used in case (a) to Lx / de = 4 in cases (b) and (c) leads to an increase of 
ReB of about 10%. This increase of the bubble rise velocity is to be expected because the bubble 
comes closer to the “leading” bubble and thus experiences a smaller drag. By using the same 
computational domain but halving the mesh width of case  (b), we study in case  (d) the 
influence of the grid size and bubble resolution de /∆x. As the results presented in Table 2 show, the 
grid refinement has only a very small effect on ReB and WeB. 

 
Table 2: ReB and WeB for the different domain sizes and grids of case  

 case  (a) case  (b) case  (c) case  (d) 
Lx / de 8 4 4 4 
de /∆x 16 16 16 32 
ReB 61.5 67.5 67.0 66.0 
WeB 1.54 1.69 1.68 1.65 
 
5.2. Oblate ellipsoidal cap bubble (EöB = 243, M = 266) 

The Eötvös and Morton numbers of case  correspond to those found in an experiment by 
Bhaga and Weber (1981), as they investigated an air bubble rising in aqueous sugar solution with Γρ 
≈ 1/1000. Fig. 4 shows the stationary bubble shape in experiment and simulation, respectively. The 
oblate ellipsoidal cap bubble shows the typical impression at its rear. In the experiment, the bubble 
is slightly more oblate than in the simulation. The reason is presumably due to the periodic 
boundary conditions we have used in the simulation. The important effect of the periodicity length 
in the direction in which the bubble rises was already discussed in the foregoing. For case , we 
have not yet investigated the influence of Lx / de. Therefore, we cannot preclude that the difference 
in shape in Fig. 4 may partly be due to the difference in density and viscosity ratios between the 
experiment and our simulation. 
 

 
 

Fig. 4: 
Steady bubble shape for 
EöB = 243, M = 266 in 
experiment (Bhaga and 
Weber, 1981) (left) and 
simulation (right). 



  

5.3. Wobbling bubble (EöB = 3.07, M = 2.5·10-10) 

The simulation for case  has been initialized from the final state of simulation  (b), having 
the same Eötvös number EöB = 3.07 but a larger Morton number (M = 3.1·10-6). The Morton 
number has been stepwise decreased by increasing Reref  stepwise, typically by one hundred, from 
100 to 1050. A hundred time steps were computed for each intermediate Reref. About 6000 
additional time steps were computed after the Morton number reached its end value of M=2.5·10-10. 
Altogether, this procedure has simulated a vertical travel distance of about 16 times de or, 
equivalently, about four times the height of the computational domain. The bubble Reynolds 
number reached in this simulation was about 1000. 

The trajectory of the bubble’s center of mass is depicted in Fig. 5, which shows that the initially 
rectilinear path becomes unstable as the bubble rises. Initially, the bubble performs a lateral motion 
in a x-z-plane, which already starts in the initial transient, when M is decreased to 7.5·10-9. 
Associated with the path instability, we observe small asymmetries in the bubble shape. Once the 
bubble has risen to about the height of the computational domain, when M ≈ 3.7·10-10 is reached, the 
lateral motion is also observed in the x-y-plane. In the y-z-plane-view presented in Fig. 5 (d), a spiral 
motion is observed in accordance with the irregular helical path followed by the bubble. Overall, 
this transition occurs very fast, presumably because of the periodic boundary conditions, which 
cause the bubble to interact with its own wake, thereby strongly amplifying small disturbances.  

Fig. 6 shows one instantaneous bubble shape together with velocity vectors and vorticity contour 
lines in the plane z=0.5. The respective visualization displays the structure of the wake, which is 
open and displays small vortices associated with the bubble-induced turbulence. Although it is well 
known that bubbles with ReB=O(1000) may undergo irregular shape oscillations and rise on more or 
less regular zigzag, rocking or spiral paths (Clift et al., 1998; Fan and Tsuchiya, 1990), it is very 
difficult to perform quantitative or even qualitative comparisons of the present results with 
experimental investigations, such as those of Brücker (1999) or Stewart (1995), for example. This is 
due not only to the channel geometry and periodic boundary conditions used in our simulations, but 
also to the fundamental difficulty of describing the complex shape, motion and wake characteristics 
of wobbling bubbles. Furthermore, the dynamics of such bubbles is strongly influenced by the 
presence of surface-active contaminants, an effect that is not taken into account in our simulations. 

 
 
 
 

Fig 5. Trajectory of the bubble’s centre of mass: 
(a) Bird eyes view, (b) - (d) 2D projections.

Fig 6. Visualisation of instantaneous bubble 
shape, velocity vectors, and vorticity 
contour lines in plane z = 0.5. 



  

6. Conclusions 

We have developed a computer code for the direct numerical simulation of certain aspects of 
bubble dynamics in a fluid by combining the Volume-of-Fluid method for tracking the gas-liquid 
interface with a new interface reconstruction algorithm. The code simulates well the underlying 
physical phenomena, as we have shown using typical 3D benchmark problems for single bubbles of 
different shape, wake, and motion. In particular, our code can be used to simulate even gas-liquid 
flow regimes at low Morton numbers and high bubble Reynolds numbers, where, as evidenced by 
many experiments, the bubble shapes and rising paths are irregular and non-steady, while the wake 
is turbulent. Such bubbles are of special practical relevance for general technical applications e.g. in 
power engineering and chemical engineering. 

Although the simulations we presented in this paper were performed using a gas-liquid density 
ratio of 0.5, they showed that the Eötvös and Morton number are the most important similarity 
parameters that determine the bubble shape and the type of its wake. Since the bubble-induced 
turbulence is strongly associated with the flow around the bubble and the generation of vortices in 
its wake, it also follows that the Eötvös and Morton numbers will be important parameters in 
models for bubble-induced turbulence. 

Our code is not restricted to density ratios of order 0.1 - 1. Future work is aimed at simulations in 
which the density ratio is varied but the Eötvös and Morton numbers are kept fixed. A qualitative 
verification of our code is also envisaged for bubble Reynolds numbers of about 400, where regular 
spiraling bubbles, undergoing no shape-oscillations, are expected according to detailed experimental 
investigations (Brücker, 1999). Longer-term research aims at investigating bubble-bubble and 
bubble turbulence interactions, by simulating the behavior of clusters of bubbles. The overall goal of 
this research is to contribute towards the development of improved statistical models to account for 
phenomena in engineering CFD codes for bubbly flows. 
 
References 
Ashgriz, N., Poo, J.Y., 1991. FLAIR: Flux line-segment model for advection and interface 

reconstruction. J. Comput. Physics 127, 449-468. 
Bhaga, D., Weber, M.E., 1981. Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid 

Mech. 105, 61-85. 
Brackbill, J.U., Kothe, D.B., Zemach, C., 1992. A Continuum Method for Modeling Surface 

Tension. J. Comput. Phys. 100, 335-354. 
Brücker, C., 1999. Structure and dynamics of the wake of bubbles and its relevance for bubble 

interaction. Physics of Fluids 11, 1781-1796.  
Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops, and Particles. Academic Press. 
Fan, L.S., Tsuchiya, K., 1990. Bubble wake dynamics in liquids and liquid-solid suspensions. 

Butterworths-Heinemann Series in Chemical Engineering. Butterworths, Boston. 
Grace J.R., 1973. Shapes and velocities of bubbles rising in infinite liquids. Trans. Instn. Chem. 

Eng. 51, 116-120. 
Kothe, D.B., 1998. Perspective on Eulerian Finite Volume Methods for Incompressible Interfacial 

Flows. In: Free Surface Flows. H.C. Kuhlmann, H-J Rath, eds., Springer-Verlag, 267-331. 
Sabisch, W., 2000. Dreidimensionale numerische Simulation der Dynamik von aufsteigenden 

Einzelblasen und Blasenschwärmen mit einer Volume-of-Fluid-Methode. Forschungszentrum 
Karlsruhe, Wissenschaftliche Berichte FZKA 6478, Juni 2000 (http://www.fzk.de/hbk/literatur/ 
FZKA_Berichte/FZKA6478.pdf). 

Sabisch, W., Wörner, M., Grötzbach, G., Cacuci, D.G., 1999. An improved volume of fluid method 
for numerical simulation of clusters of bubbles. In: M. Sommerfeld, ed., Proc.9th Workshop on 
Two-phase Flow Predictions, Merseburg, Germany, April 13-16, 1999, 175-184. 

Scardovelli, R., Zaleski, S., 1999. Direct numerical simulation of free-surface and interfacial flows. 
Annu. Rev. Fluid Mech. 31, 567-603. 



  

Schönauer, W., Häfner, H., Weiss, R., 1997. LINSOL, a parallel iterative linear solver package of 
generalized CG-type for sparse matrices. In: M. Heath et al., eds., Proc. 8th SIAM Conference on 
Parallel Processing for Scientific Computing (SIAM, Philadelphia, PA, 1997). CD-Rom (ISBN 
0-89871-395-1). 

Sethian, J.A., 1999. Level set methods and fast marching methods: evolving interfaces in 
computational geometry, fluid mechanics, computer vision, and materials science. 2nd edition. 
Cambridge University Press, Cambridge, UK. 

Stewart, C.W., 1995. Bubble interaction in low-viscosity liquids. Int. J. Multiphase Flow 21, 1037-
1046. 

Tryggvason, G., Bunner, B., Ebrat, O., Tauber, W., 1998. Computations of multiphase flows by a 
finite difference/front tracking method. I. Multi-fluid flows. Von Karman Institute Lecture Notes, 
Von Karman Institute, Brussels, Belgium.  

Wellek, R.M., Agrawal, A.K., Skelland, A.H.P., 1966. Shape of liquid drops moving in liquid 
media. AIChE Journal 12, 854-862. 

Wörner, M., Sabisch, W., Grötzbach, G., Cacuci, D.G., 2001. Volume-averaged conservation 
equations for Volume-of-Fluid interface tracking. Proc. 4th Int. Conference on Multiphase Flow, 
ICMF-2001, New Orleans, Louisiana, U.S.A., May 27 - June 1, 2001. 


