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Abstract  Bubble train flow is a two-phase flow pattern that frequently occurs in narrow channels. It is 
characterized by a regular sequence of bubbles of identical shape which move with the same velocity. The 
flow is, therefore, fully described by a flow unit cell, which consists of a bubble and the liquid slug 
separating it from the next bubble. In this paper we use the volume-of-fluid method to perform direct 
numerical simulations of co-current air-oil bubble train flow in a square vertical channel of 2 mm width. 
Results of five simulations for different length of the flow unit cell are presented. It is found that, for the 
same axial pressure drop per unit length, the bubble velocity and the mean liquid velocity increase with 
increase of the length of the flow unit cell. The bubble diameter also increases but becomes almost constant 
for larger values of the length of the flow unit cell. The correlation of the bubble diameter with the capillary 
number, Ca, shows that there is a regime where the bubble diameter increases with Ca and one regime where 
it decreases with Ca. The border between both regimes is determined by a ratio of bubble length to channel 
width of about 1.2. The latter finding is new as in experimental studies from literature so far only the second 
regime is observed. 
 
 

1 Introduction 
The prevailing trend to miniaturize conventional fluidic systems and devices for applications in 

chemical engineering has fostered recent interest in multiphase transport in small channels. 
Potential applications include miniaturized heat exchangers (Schubert et al., 2001), evaporators, 
condensers, distillation units, liquid-liquid and gas-liquid reactors, and multiphase extraction and 
separation units. For multiphase micro process engineering a large benefit stems from operating 
with gas and liquid layers of defined geometry with a defined interface, unlike most macroscopic 
disperse systems which typically have a size distribution of bubbles in the continuous liquid (Hessel 
et al., 2004). Related to this, a further potential benefit is the operation in many parallel channels, 
each having the same two-phase flow pattern. For practical applications, this should allow for a 
favorable numbering up approach instead of scaling up. 

The design and optimization of miniaturized devices, therefore, require knowledge of the basic 
hydro-dynamical phenomena of the two-phase flow in a single channel. Although the development 
of the micro particle image velocimetry has made great progress (Meinhart et al., 1999), this 
method has been used so far only for single phase flow and can not be used to measure the three-
dimensional local velocity field of both phases in the entire mini- or micro-channel.  

An alternative measure to provide the desired information is the direct numerical simulation 
method (DNS). Recently, we performed direct numerical simulations of the air-oil bubble train flow 
in a vertical square capillary of 2 mm width (Ghidersa, 2003; Ghidersa et al., 2004). Here, bubble 
train flow refers to the flow of a regular train of bubbles, having identical shape and distance from 
each other and moving with the same velocity. Bubble train flow is, therefore, fully described by a 
flow unit cell (FUC). In the numerical simulation, therefore, one can consider one bubble only and 
use periodic boundary conditions in axial direction to account for the influence of the leading and 
trailing bubble. Our numerical simulations covered two values of the capillary number, which is the 
main physical parameter characterizing two-phase flows in small channels. A comparison of the 
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DNS results with experimental data of Thulasidas et al. (1995) showed good agreement for the 
bubble velocity and the relative velocity of the phases (Ghidersa et al., 2003). However, the 
maximum diameter of the bubble was underestimated by the DNS. This was attributed to the fact 
that in the DNS a cubic flow unit cell was considered while in the experiment the axial length of the 
flow unit cell, Lfuc

*, is much larger than the channel width, W* (Note that throughout this paper the 
superscript * is used to distinguish a dimensional quantity from its non-dimensional counterpart). 
The aim of the present paper is, therefore, to perform a detailed numerical investigation on the 
influence of the length of the flow unit cell. For this purpose five simulations with values of Lfuc

* / 
W* ranging from 1 to 2 are performed. In these simulations the void fraction is ε = 33% and the 
same axial pressure drop per unit length is specified as input parameter. 

In the remainder of this paper we first give in Section 2 the governing equations and shortly 
describe the numerical method of our in-house computer code used to perform the simulations. In 
this section we also give the numerical and physical parameters of the simulations. In Section 3 we 
discuss in detail the simulation results where we focus on the dependence of the bubble diameter 
and bubble velocity on the length of the flow unit cell and the capillary number, respectively. The 
paper is closed by conclusions to be presented in Section 4. 

2 Computational set up 

2.1 Governing equations 
The non-dimensional conservation equations for mass and momentum of two immiscible 

incompressible Newtonian fluids can be written in the form 
 

 m 0∇ ⋅ =v  (1) 
 

 

( ) ( )T ref

ref ref

ref
ref

1 ( ) (1 )
t

m m
m m m m m m g

i i
p

EoP f
Re We

aEu
We

ρ
ρ µ

κ

∂
+ ∇ ⋅ = −∇ + ∇ ⋅ ∇ + ∇ − −

∂

+ +

v
v v v v e

ne
 (2) 

 
where the center-of-mass velocity, the mixture density, and the mixture viscosity are defined by 
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Here, ρl

* and ρg
* are the liquid and gas density, µl

* and µg
* are the (constant) liquid and gas 

viscosity, f is the liquid volumetric fraction within a mesh cell, vl
* and vg

* are the gas and liquid 
velocity, and Uref

* is a reference velocity. 
To allow for the use of periodic boundary conditions in the numerical simulation, the mixture 

momentum equation (2) involves the “reduced pressure” 
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Here, p* is the actual pressure, g* = g*eg is the gravity vector, x* is the co-ordinate vector, and |∆p*| 
is the constant axial pressure drop per reference length Lref

* (In the sequel we will use Lref
*  to 



5th International Conference on Multiphase Flow, ICMF’04 
Yokohama, Japan, May 30–June 4, 2004 

Paper No. 154 

- 3 - 

normalize all length scales). Due to the above decomposition, in equation (2) the influence of 
gravity is accounted for by the buoyancy force which involves the unit vector in direction of 
gravity, eg. Similarly, the axial pressure drop results in a body force term that involves the unit 
vector in axial direction, ep. 

The definitions of the reference Reynolds number, Reref, reference Eötvös number, Eoref, 
reference Weber number, Weref, and reference Euler number, Euref, appearing in the mixture 
momentum equation (2) are 
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where σ* is the coefficient of surface tension. The last term in the mixture momentum equation (2) 
represents the surface tension force. In this term ai = ai

* Lref
* is the non-dimensional volumetric 

interfacial area concentration in the mesh cell, κ = κ* Lref
* is twice the non-dimensional mean 

curvature of the interface and ni is the unit normal vector to the interface pointing into the liquid. 
The set of equations is completed by the transport equation for the liquid volumetric fraction 
 

 m 0f f
t

∂ + ∇ ⋅ =
∂

v  (6) 

 
which expresses - in the absence of phase change - the mass conservation of the liquid phase. The 
derivation of the above set of equations is given in Wörner et al. (2001). Here, the equations are 
already in simplified form. Namely, it is assumed that within a mesh cell both phases move with the 
same velocity, i.e. the center-of-mass velocity vm. This assumption corresponds to a locally 
homogeneous model. 

2.2 Numerical method 
We now give a short outline of the numerical method used in our in-house computer code 

TURBIT-VOF. The code is based on the finite volume method, uses Cartesian co-ordinates, and 
employs a regular staggered grid. The general solution strategy is based on a projection method 
where a conjugated gradient method is used to solve the resulting pressure Poisson equation. For 
approximation of spatial derivates a second order central difference scheme is used. The integration 
in time is done by a third order explicit Runge-Kutta method. The transport equation (6) for the 
liquid volumetric fraction is solved by a volume of fluid method which involves two steps. First, for 
each mesh cell that instantaneously contains both phases, the interface orientation and location is 
reconstructed using the PLIC (Piecewise Linear Interface Reconstruction Algorithm) method 
EPIRA that locally approximates the interface by a plane. In a second step the fluxes of liquid 
across the faces of the mesh cell are computed. For details about the numerical method we refer to 
Sabisch et al. (2001) and Ghidersa (2003). 

2.3 Geometry and grid parameters 
We define our coordinate system by taking y* as stream-wise vertical direction and x* and z* as 

wall-normal directions. Thus, the gravity vector points in negative y*-direction and we have −eg = ep 
= ey. We consider a computational domain of size W* × Lfuc

* × W*. As we normalize all length 
scales by Lref

* = W* = 2 mm the non-dimensional size of the computational box is 1 × Lfuc × 1. In 
this paper we perform five simulations with Lfuc ranging from 1 to 2, see Table 1. Thus, in all the 
five simulations the channel has the same cross sectional area while the axial length of the flow 
domain differs. In all simulations the computational grid is uniform and consists of cubic mesh cells 
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of size h = 1/48. The use of this grid size is supported by a grid sensitivity study performed for case 
A where it was found that the differences of result as compared to a simulation run with a grid 
width h = 1/64 is very small (Ghidersa et al., 2004). At the four side walls of the channel no-slip 
boundary conditions are imposed. In stream-wise vertical direction the presence and influence of 
the neighboring unit cells is simulated by periodic boundary conditions. The simulations are started 
from fluid at rest. The time step width is ∆t = 2.5 × 10-5. The Courant-Friedrichs-Levy number 
based on the terminal bubble velocity UB ≈  4 takes a value of CFL = UB ∆t / ∆x ≈  0.005. 

Table 1 
Geometrical and computational parameters of the simulation runs 

Case Lfuc computational domain grid time steps problem time 
A 1 1 × 1 × 1 48 × 48 × 48 24,000 0.60 
B 1.25 1 × 1.25 × 1 48 × 60 × 48 24,000 0.60 
C 1.5 1 × 1.5 × 1 48 × 72 × 48 26,000 0.65 
D 1.75 1 × 1.75 × 1 48 × 84 × 48 26,000 0.65 
E 2 1 × 2 × 1 48 × 96 × 48 28,000 0.70 

2.4 Initial bubble shape 
We now describe the initial shape of the bubble for the different simulations. In case A it is a 

sphere with diameter DB = 0.858. For the other cases the initial shape of the bubble is given by an 
elongated body of revolution, which consists of three parts, see Fig. 1. Let η = r* / Lref

* be the 
dimensionless radius of the bubble and ζ = ζ * / Lref

* the dimensionless distance from the bubble 
apex. The first two segments of the bubble correspond to the analytical solution for the shape of a 
semi-infinite Taylor bubble rising in a vertical tube under the assumption of potential flow 
(Dumitrescu, 1943). The length of the first two segments of the bubble is ζbody. To obtain a closed 
bubble we approximate its rear by an axisymmetric ellipsoid with aspect ratio k = a / b > 0, see 
Figure 1. Mathematically, the three parts are given by the following functions: 
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where b, d and ζmax are given by 
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By formulas (7) we ensure that for ζ = 0.25 and ζ = ζbody the curves as well as their first derivatives 
are continuous. To define the bubble shape we only need to specify ζbody and k. Here, we take the 
rear of the bubble to be a segment of a sphere, i.e. k = 1. The non-dimensional volume of the bubble 
is given by the integral 
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Here, we want to keep the gas hold up constant in all the simulations. Therefore, for each case, we 
determine ζbody from the condition VB = ε Lfuc. 

 

 

Fig. 1. Sketch of initial bubble shape. 
 
In Figure 2 we show the initial bubble shape for the five cases. Note that in case C the tip of the 

bubble points downward. By this we intend to investigate if the initial bubble shape has any 
influence on the steady bubble shape and the terminal bubble velocity. 

 

 

Fig 2. Initial bubble shape for cases A-E (from left to right). 
 

2.5 Physical parameters 
In Table 2 we give the physical properties of the fluids. The density and viscosity of the liquid 

phase are for silicone oil and correspond to the experiments by Thulasidas et al. (1995). While in 
these experiments the disperse phase is air, in our simulations we increase the gas density by a 
factor of 10 as compared to air. This is in order to increase the computational efficiency of our 
explicit time integration scheme, which results in severe time step restrictions if the density ratio is 
very low (Wörner, 2002). This increase of the gas density is justified due to the results of the 
numerical study of Wörner (2003). In that paper the influence of the gas-liquid density ratio is 
investigated for the buoyancy driven rise of an oblate ellipsoidal bubble and a spherical cap bubble. 
It is found that under proper scaling the steady bubble shape and the velocity field inside the bubble 
and in the liquid are invariant with respect to a variation of the gas-liquid density ratio. In order to 
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keep the ratio of the Reynolds numbers in the gas and liquid flow similar to the experiment, we 
increase the dynamic viscosity of the gas in the computations by a factor of 10, too. Therefore, the 
gas-liquid kinematic viscosity ratio is the same in the experiment and in our computations. The 
physical properties given in Table 2 result in a Morton number 

 

 
* * * *4

*2 *3

( )
0.00493l g l

l

g
M

ρ ρ µ
ρ σ
−

≡ =  (10) 

 
This value is only slightly lower than the one in the experiment, where M = 0.00498. In Table 3 we 
list the reference scales and the non-dimensional groups that appear in the mixture momentum 
equation. The reference Euler number is estimated from the pressure drop of the single phase flow 
with the same liquid flow rate as in Thulasidas et al. (1995). 

Table 2 
Physical properties of the simulations 

ρl
* ρg

* µl
* µg

* σ* g* 
957 kg/m3 11.7 kg/m3 0.048 Pa s 1.84 ×10-4 Pa s 0.02218 N/m 9.81 m/s2 

Table 3 
Reference scales and dimensionless numbers of the simulations 

Lref
* Uref

* Reref  Eoref  Weref Euref 
0.002 m 0.0264 m/s 1.0527 1.065 0.060 27.03 

3 Results 

3.1 Integral velocities 
In Figure 3 we show the time history of the bubble velocity and the mean liquid velocity for the 

five cases. We see that the mean liquid velocity, Ul, reaches its terminal value after a problem time 
of only t ≈  0.1 which corresponds to about 0.01 seconds. For the bubble itself it takes much more 
time to reach its terminal velocity. We see that with the increase of the length of the flow unit cell 
both, the velocity of the bubble and the mean liquid velocity do increase. It may be expected that 
with further increase of Lfuc both UB and Ul will approach limiting values so that they eventually 
become independent of Lfuc. However, from the results shown in Fig. 3 it appears that this will be 
the case for values of Lfuc much larger than 2. 

From Figure 3 we also observe that for case C the time history of UB in the interval 0.05 < t < 0.3 
qualitatively differs as compared to the other cases. We attribute this to the initial bubble shape of 
case C which differs from the other cases so far as the bubble tip is oriented downwards, see Fig. 2. 
However, the terminal values of UB and Ul do well fall in between those of cases B and D. This 
indicates that the initial bubble shape has no influence on the final bubble velocity and shape. 

In Table 4 we give the computed values for the terminal bubble velocity UB and the mean liquid 
velocity Ul. These velocities are displayed in graphical form in Fig. 4 as function of Lfuc. Also 
shown are the gas superficial velocity Jg = ε UB and the liquid superficial velocity Jl = (1 - ε ) Ul as 
well as the total superficial velocity Jtotal = Jg + Jl. The total superficial velocity equals the slug 
velocity Uslug which is the mean axial velocity in any cross section fully occupied by the liquid. 
From Fig. 4 we see that all the mentioned integral velocities increase with increase of Lfuc. 
However, the differences for cases A and B are very small while they are significant for cases B-E. 
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Fig. 3. Time history of bubble velocity, UB, and mean liquid velocity, Ul. 
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Fig. 4. Terminal integral velocities for different values of the length of the flow unit cell. 
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Table 4 
Selected simulation results 

Case Lfuc UB Ul DB LB LB / Lfuc CaB V Z 
A 1 3.60 1.21 0.81 0.93 0.93 0.204 1.80 0.445 
B 1.25 3.61 1.29 0.84 1.05 0.84 0.207 1.75 0.430 
C 1.5 3.83 1.37 0.85 1.20 0.80 0.215 1.75 0.430 
D 1.75 4.17 1.44 0.85 1.36 0.78 0.238 1.78 0.438 
E 2 4.50 1.51 0.85 1.53 0.76 0.253 1.80 0.445 

 

3.2 Bubble shape 
Figure 5 shows the left half of the steady bubble shape for all five cases. To allow for a good 

visualization for each case the results are given for an instant in time when the bubble tip is almost 
at the top of the computational domain. The visualization of the bubble shape for a certain instant in 
time is performed as follows. For each mesh cell that contains both phases (0 < f < 1) the centroid of 
the plane representing the interface is computed. The centroids of neighboring mesh cells are then 
connected to form triangles or quadrangles yielding a closed surface. By this procedure it is 
possible to determine the bubble dimensions with a resolution that is smaller than the actual mesh 
width h. 

In all five cases the bubble is axisymmetric, i.e. its cross section at any axial position is circular. 
This is to be expected, since the generally accepted lower limit of the capillary number CaB ≡ µl

* 
UB

* / σ* for which the bubble shape remains axisymmetric when it moves in a square channel is 
Caaxi = 0.04 (Ratulowski & Chang, 1989; Thulasidas et al., 1995). 

To quantify the bubble shape we give in Table 4 values for the non-dimensional bubble diameter 
DB. This is the diameter of the bubble in the cross section where the bubble has its largest lateral 
extension. We also give values for the non-dimensional bubble length LB and for the ratio LB / Lfuc. 
These data are displayed in Fig. 6 for the different values of Lfuc. We see that for cases A-C the 
bubble diameter increases while it is almost constant for cases C, D and E. While the length of the 
bubble monotonically increases from case A to E, the slope of the ratio LB / Lfuc becomes very small 
for case C, D, and E. These results suggest that the bubble diameter and the ratio between the 
bubble length and the length of the flow unit cell may become independent of Lfuc for Lfuc > 2. 

A detailed comparison of the bubble shape shows that the radius of curvature of the bubble tip, 
rtip, is almost the same for case A and B. Also for case C, D and E the value of rtip is about the same, 
but is somewhat smaller than for case A and B. However, for all cases A-E the value of rtip is 
clearly smaller than that of the analytical solution obtained by potential flow theory for a bubble 
rising in a pipe, see Section 2.4. The radius of curvature at the bubbles rear is a little bit smaller for 
case A than for case B, both being smaller than those of case C, D and E which is almost the same 
for these three cases. 

Figure 5 also shows the velocity field in the axial mid-plane for the five cases. In the left half of 
the figure the velocity field is shown for a fixed frame of reference while in the right half it is 
displayed for the frame of reference moving with the bubble, i.e. the bubble velocity is subtracted 
from the vertical velocity component. We begin our discussion with the velocity field in the fixed 
frame of reference. The velocity profile in the liquid slug has the form of a parabola and is similar 
for all five cases. In the region where the liquid film is very thin the liquid velocity is almost zero. 
In the frame of reference moving with the bubble the flow inside the bubble can be analyzed. We 
find that there is one big vortex which occupies almost the complete bubble. In the rear part of the 
bubble, however, in this frame of reference the velocity is almost zero. As regards to the flow in the 
liquid, the velocity profiles in the frame of reference moving with the bubble indicate the part of the 
liquid slug that is moving with the velocity of the bubble. 
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Fig. 5. Bubble shape and velocity field in plane z = 0.5 for fixed frame of reference (left half) 
and for frame of reference linked to the bubble (right half) for (a): case A, t = 0.595, (b): case 
B, t = 0.38, (c): case C, t = 0.44, (d): case D, t = 0.51, (e): case E, t = 0.54. In y-direction only 
every 8th vector is displayed. 

(a) 
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Fig. 6. Bubble diameter and bubble length for different values of the length of the flow unit cell. 
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Fig. 7. Bubble diameter and bubble length as function of the capillary number. 
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Fig. 8. Non-dimensional velocities V and Z for different values of the length of the flow unit cell. 
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Fig. 9. Non-dimensional velocities V and Z as function of the capillary number. 
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3.3 Verification and capillary number dependence 
The dominant forces for two phase flow in small channels are the viscous force and the surface 

tension force. The ratio between these two forces constitutes the capillary number. Quantities of 
interest such as the bubble diameter DB

* or the liquid film thickness dl
* = (W* − DB

*) / 2 are 
therefore usually correlated in terms of CaB ≡ µl

* UB
* / σ*. Since µl

* and σ* are constant CaB can be 
interpreted as non-dimensional bubble velocity. The values of CaB for the five cases are listed in 
Table 4. Because the bubble velocity increases with Lfuc the same holds for CaB.  

Thulasidas et al. (1995) give experimental result for the bubble diameter, for the ratio of bubble 
velocity to total superficial velocity, Z = UB

* / Jtotal
*, and for the relative bubble velocity V = (UB

* − 
Uslug

*) / UB
* in terms of CaB. In our simulations the range of the capillary number is 0.204 ≤ CaB ≤ 

0.253. For this range Thulasidas et al. (1995) give for the different quantities values falling (with 
some scattering) in the range 0.82 < DB < 0.86, 0.435 < Z < 0.475 and 1.68 < V < 1.84, respectively. 
Thus, our computational results for DB, Z and V listed in Table 4 do well agree with these 
experimental data. 

In Figure 7 we show the computed values of DB over CaB. We see that first there is an increase 
of DB with CaB (case A, B, C) but then there is a decrease (case C, D and E). This result is in 
contrast to the experimental study of Thulasidas et al. (1995) who find a monotonic decrease of the 
bubble diameter with increasing capillary number. We interpret this finding as follows. In the 
experiments of Thulasidas et al. (1995) the bubble length is always larger than the width of the 
channel. In our simulations this is, however, not the case and the ratio LB = LB

* / W* ranges from 
0.93 in case A to 1.53 for case E. In Figure 7 we also show the variation of LB with CaB. The data 
suggest that there may exist a critical bubble length LB,crit ≈  1.2. For values smaller than LB,crit the 
bubble diameter increases with increasing capillary number while for values larger than LB,crit it 
decreases. However, the accurate determination of LB,crit requires further simulations especially in 
the range 1.25 < Lfuc < 1.75. While the computational results for DB over CaB in Fig. 7 show a local 
maximum, we find for the dependence of V and Z on Lfuc and CaB a local minimum, see Figs. 8 and 
9. These results suggest that there is a significant change in the flow conditions when the bubble 
length exceeds LB,crit. 

4 Conclusions 
In this paper we investigate bubble train flow in a square vertical mini-channel of 2 mm width by 

direct numerical simulations based on the volume of fluid technique for interface tracking. We are 
especially interested in the influence of the length of the flow unit cell. Five simulations are 
performed where the ratio between flow unit cell length and channel width takes values of Lfuc = 1, 
1.25, 1.5, 1.75 and 2. All the other physical and numerical parameters are kept constant. The 
computations are verified by experimental data (Thulasidas et al., 1995) where air is the disperse 
phase and silicon oil is the continuous phase. The computational results for the diameter of the 
bubble and for characteristic velocities are in agreement with respective experimental data. 

The computational results show that the bubble velocity and the mean liquid velocity increase 
with increasing length of the flow unit cell. The increase of the bubble velocity results in an 
increase of the capillary number. The diameter of the axisymmetric bubble first increases with Lfuc 
but is almost constant for Lfuc > 1.5. Also the radius of curvature of the bubble tip and bubble rear 
become independent of Lfuc for Lfuc > 1.5. The radius of curvature is, however, smaller than that 
corresponding to the analytical potential flow solution for a Taylor bubble rising in a pipe through 
otherwise stagnant liquid. An analysis of the local velocity field shows that in the liquid film the 
velocity is almost zero, while the flow in the bubble is dominated by one large vortex. 

Correlating the dimensionless bubble diameter DB and the relative bubble velocity Z with the 
capillary number CaB gives the interesting and new result that these relations are not monotonic as 
experimental data from literature suggest. Instead, there exists a maximum for DB(CaB) and a 
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minimum for Z(CaB). Our results indicate that this maximum respectively minimum may be 
determined by a ratio of bubble length to channel width of about 1.2. To clarify this topic, however, 
further simulations with values of the length of the flow unit cell in the range 1.25 < Lfuc < 1.75 are 
required and will be performed in future. We remark that an experimental investigation of this 
aspect may be difficult for two reasons. First, the length of the flow unit cell is not a parameter 
which can be easily adjusted. Second, when the length of the liquid slug becomes small the bubble 
train flow may become unstable and coalescence of neighboring bubbles may occur. 
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