

Theory & Experiment in Methanol synthesis and the Methanol-to-Olefin Reaction

7 - Combining Experiment and Theory

Institute of Catalysis Research and Technology Institute for Chemical Technology and Polymer Chemistry

CO₂ emissions in Germany

source: german environmental agency - www.umweltbundesamt.de

-> 30% of CO₂ emissions from (petro-)chemical industry

source: german environmental agency - www.umweltbundesamt.de

Institute of Catalysis Research and Technology

3

Theory in heterogeneous catalysis

electrification of energy intense processes

drastic shift in resources

source: Roadmap Chemie 2050 - VCI & DECHEMA (2019)

4

Institute of Catalysis Research and Technology

14.06.2017

6

 $\begin{array}{lll} & CO_2 + 2 H_2 \rightleftharpoons CH_3OH + H_2O & \Delta H^{0}_{298} = -40.9 \text{ kJ/mol} \\ & CO + 2 H_2 \rightleftharpoons CH_3OH & \Delta H^{0}_{298} = -90.7 \text{ kJ/mol} \\ & CO_2 + H_2 \rightleftarrows CO + H_2O & \Delta H^{0}_{298} = 49.8 \text{ kJ/mol} \end{array}$

Methanol: (metal catalyst)

MTO: (zeolite catalyst)

 $2 \text{ CH}_{3}\text{OH} \xrightarrow{-\text{H}_{2}\text{O}} \text{CH}_{3}\text{OCH}_{3} \xrightarrow{-\text{H}_{2}\text{O}} \text{H}_{2}\text{C}=\text{CH}_{2} + \text{H}_{2}\text{C}=\text{CH}-\text{CH}_{3} + \text{higher olefins, alkanes, aromatics}$

- Take-away: the catalysis is a system of energy-based manipulations of chemical reaction pathways
- Very different reaction mechanisms, conditions, catalysts.

7

methanol synthesis

Holse et al, J. Phys. Chem. C 2015, 119, 2804.

8

Behrens et al, Science 2012, 336, 893.

9

CO hydrogenation seems faster than CO₂ hydrogenation over copper —> contradicting experiments !!?

Behrens et al, Science 2012, 336, 893.

Large difference in CO₂ hydrogenation (up to 0.4 eV)

CO and CO₂ hydrogenation on Cu(211) comparable —> CO still somewhat faster !?

—> BEEF-vdW able to describe CO and CO₂ hydrogenation !?

Studt et al, Catal. Lett. 2013, 143, 71.

influence of CO₂ differential vs integral conditions

Sahibzada, Metcalfe, Chadwick, J. Catal. 1998, 174, 111.

methanol synthesis under differential conditions

Studt, Behrens, Kunkes et al, ChemCatChem 2015, 7, 1105.

CO vs CO₂ hydrogenation

Studt, Behrens, Kunkes, Thomas, Zander, Tarasov, Schumann, Frei, Varley, Abild-Pedersen, Nørskov, Schlögl, ChemCatChem 2015, 7, 1105.

modeling CO and CO₂ hydrogenation

H₂ + 2* ---> 2 H*

CO₂ + H* ---> HCOO* HCOO* + H* ---> HCOOH* + * HCOOH* + H* ---> H₂COOH* + * H₂COOH* + * ---> H₂CO* + OH*

$$CO + * \longrightarrow CO*$$

 $CO* + H* \longrightarrow HCO* + *$
 $HCO* + H* \longrightarrow H_2CO* + *$

H₂CO* + H* ---> H₃CO* + * H₃CO* + H* ---> CH₃OH + 2*

Studt, Behrens, Kunkes, Thomas, Zander, Tarasov, Schumann, Frei, Varley, Abild-Pedersen, Nørskov, Schlögl, ChemCatChem 2015, 7, 1105.

Studt, Behrens, Kunkes, Thomas, Zander, Tarasov, Schumann, Frei, Varley, Abild-Pedersen, Nørskov, Schlögl, ChemCatChem 2015, 7, 1105.

scaling relations for adsorption energies

Abild-Pedersen, Greeley, Studt, Rossmeisl, Munter, Moses, Skúlason, Bligaard, Nørskov, Phys. Rev. Lett. 2007, 99, 016105.

Theory in heterogeneous catalysis

Wang et al, Phys. Chem. Chem. Phys. 2011, 13, 20760.

searching for new CO₂ hydrogenation catalysts

 $CO_2 + H^* -> HCOO^*$ $HCOO^* + H^* -> HCOOH^* + *$ $HCOOH^* + H^* -> H_2COOH^* + *$ $H_2COOH^* + * -> H_2CO^* + OH^*$ $H_2CO^* + H^* -> H_3CO^* + *$ $H_3CO^* + H^* -> CH_3OH + 2*$

pathway identified for Cu(211)

all reaction intermediates bind through oxygen

calculate all intermediates on a range of surfaces (211)

express all energies in terms of $\Delta E_{\rm O}$

```
combine MM + Scaling —> R(\Delta E_0)
```


Studt et al, Nature Chem. 2014, 6, 320.

Studt et al, Nature Chem. 2014, 6, 320.

Studt et al, Nature Chem. 2014, 6, 320.

The Cu/ZrO₂ system

Small clusters do not represent electronic structure of metallic copper

--> Supported nanowires may represent possible solution to study interface effects

Theory in heterogeneous catalysis