The reactions

$$CO_2 + 2H_2 \rightleftharpoons CH_3OH + H_2O$$
 $\Delta H_{298 K}^0 = -40.9 \text{ kJ/mol}$

Methanol: (metal catalyst)

 $\Delta H_{298 \text{ K}}^0$ = - 90.7 kJ/mol

 $\Delta H_{298 \text{ K}}^0$ = 49.8 kJ/mol

MTO: (zeolite catalyst)

2 CH₃OH $\xrightarrow{-H_2O}$ CH₃OCH₃ $\xrightarrow{-H_2O}$ H₂C=CH₂ + H₂C=CH-CH₃ + higher olefins, alkanes, aromatics

Extremely exotherm: 56 kJ/mol per CH₃OH (45 kJ/mol per DME)

Autocatalytic in nature (both olefins and aromatic cycle)

Deactivation by coking.

Challenges: heat transport and regeneration

 $CO + 2 H_2 \implies CH_3OH$

 $CO_2 + H_2 \rightarrow CO + H_2O$

Methanol as base chemical

00

Karlsruhe Institute of Technology

MTO over zeolites

- Key aspects
 - Selectivity to Light Olefins
 - Stability
- Selectable / Tunable Properties of Zeolites
 - Pore opening and Cage size
 - Acidity
 - Mesostructure

Best catalyst to date: SAPO-34

METHANOL-TO-OLEFINS (MTO)

4 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Polyethylene and Polypropylene

 Thousands of uses of polyethylene and polypropylene.

5

30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Polyethylene and Polypropylene

 Main source of the ethylene and propylene (monomer feedstock for polyethylene and polypropylene) is steam cracking of naphtha or other hydrocarbon.

Courtesy: Simon R. Bare

Methanol-to-Olefins (MTO) reaction

- Methanol is an alternate source of light olefins.
- Dehydration with shape selective transformation to low molecular weight alkenes.

Courtesy: Simon R. Bare

7 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

UOP/Hydro MTO Process

00

SAPO-34 Catalyst

Courtesy: Simon R. Bare, Unni Olsbye

SAPO-34 for MTO Process

High selectivity and yield to light olefins.

Material	SAPO-34				
T atom %	10% Si (gel)				
Selectivities (2 hr)					
C ₂ -C ₄ olefins	96				
CH ₄	1.4				
C_2H_6	0.3				
C ₃ H ₈	0.9				
Stability					
hr at >50%	>40				
conversion					
Coking					
carbon on	19% after				
used catalyst	54 HOS				

Many acid catalysts are active for the methanol dehydration – what makes SAPO-34 the preferred catalyst?

Courtesy: Simon R. Bare

Yuen, et al., Microporous Materials, 2 (1994) 105

What is a Zeolite? Zeolite

From Wikipedia, the free encyclopedia

Zeolites (Greek, *zein*, "to boil"; *lithos*, "a stone") are minerals that have a micro-porous structure. The term was originally coined in the 18th century by a Swedish mineralogist named Axel Fredrik Cronstedt who observed, upon rapidly heating a natural mineral, that the stones began to dance about as the water evaporated. Using the Greek words which mean "stone that boils," he called this material zeolite.

Zeolites occur in nature.

Courtesy: Simon R. Bare Mordenite

Chabazite

Natrolite

Zeolites

- Zeolites consist of a framework built of tetrahedra.
- Each tetrahedron comprises a T-atom bound to four O atoms.
- Oxygen bridges connect the tetrahedra.
- T-atoms are Si or Al.

Courtesy: Francesca Bleken (U. Oslo), Simon R. Bare

Zeolites

- Alumino-silicate framework
- Crystalline, microporous (pore diameter 3-14Å)
- Framework density <20 T-atoms/1000Å³

Courtesy: Simon R. Bare

Institute of Catalysis Research and Technology (IKFT) Institute for Chemical Technology and Polymer Chemistry (ITCP)

00

Ways to Visualize a Zeolite: ZSM-5 (MFI)

- Medium pore size 5.1 x 5.5Å
 - Wire frame structure showing only Tatoms
 - Pore structure critical for thinking about a molecule diffusing through the structure.

Courtesy: Simon R. Bare

Ranges of Pore Sizes

 Zeolites exhibit a range of pore sizes of molecular dimensions (molecular sieves).

Acid Sites in Zeolites

 Substitute Al³⁺ for Si⁴⁺: charge imbalance – need additional cation to compensate.

Courtesy: Francesca Bleken (U. Oslo), Simon R. Bare

No total charge.

- One extra charge per Al atom introduced into the lattice.
- Cations compensate for total charge.
- Protons as cations give Brønsted acid properties. Courtesy to

Courtesy to Francesca Bleken,

Commercial Catalytic Uses of Zeolites (Refinery and Petrochemicals)

Process	<u>FAU</u>	<u>LTL</u>	<u>MOR</u>	<u>BEA</u>	<u>MWW</u>	<u>MFI</u>	AEL	<u>FER</u>	<u>RHO</u>	<u>CHA</u>	<u>???</u>
Ethylbenzene					х	x					x
Cumene	x		x	x	x	x					
Other aromatics						x					
Xylene isom						x					X
C4 isom			х								
C4 ⁻ isom						x		х			x
C5 ⁻ isom						x					x
Iso-dewaxing							x				
Amination			х			x			x	x	
C3,C4 arom						x					
Naphtha arom		x									
FCC	x					x					
Dewaxing						x					
Hydrocracking	х					x					
MTG						x					
MTO						x				x	
Toluene						x					x
SCR (automotive)			X	ļ	X				X	
= Y, USY	LTL	= Lino	de L, K-	·L	MOR = 1	norder	ite	BEA	A = beta	ı	

RHO = zeolite RHO CHA = chabazite, SAPO-34Courtesy: Simon R. Bare

K. Tanabe and W. Holderich, Appl. Catal. A, 399 (1999) 181

16 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

MTO milestones (1)

Time of Initial Discovery	Composition
Late 40's to Early 50's	Low Si/Al Ratio Zeolites
Mid 50's to late 60's	High Si/Al Ratio Zeolites
Early 70's	Pure SiO ₂ Molecular Sieves
Late 70's	AIPO ₄ Molecular Sieves
Late 70's to Early 80's	SAPO and MeAPO Molecular Sieves
Late 70's	Metallo-silicates, -aluminosilicates
Early to Mid 90's	Mesoporous Molecular Sieves Octahedral-tetrahedral Frameworks

 1975 – Mobil Oil discloses ZSM-5 catalyst for conversion of methanol to gasoline (MTG)

Courtesy: Simon R. Bare

Chang, Silvestri, and Smith, US 3894103 and 3928483

Discovery of ALPO and SAPO Materials

 In late 70's Edith Flanigen's group at Union Carbide given the challenge:

"Discover the next generation of molecular sieve materials"

Words of Edith Flanigen

MTO Demo Unit

- Started-up in 1995 at Norsk Hydro facilities in Norway
- Used commercial methanol feedstock
- UOP and Total Petrochemicals announced in Dec 2005 an integrated demonstration unit consisting of both a UOP/HYDRO Methanol-to-Olefins unit and a Total Petrochemicals/UOP Olefin Cracking unit.
- Construction started at Total's petrochemical complex in Feluy, Belgium. Start-up in 2008.

MTO Milestones (2)

- DMTO technology 2010 world's first commercial MTO unit (Baotou, China) – 0.6 Mt/a C₂⁼ + C₃⁼.
- DMTO-II: Coupled with FCC to crack higher olefins and aromatics to light olefins. Common regenerator and catalyst!
- 2018: 18 DMTO units 7.16 Mt/a

Methanol to Hydrocarbons

- Medium-pore zeolites (ZSM-5)
 - Major olefin product is Propylene
 - Significant C₅₊/aromatics by-products
 - Slow deactivation
- Small-pore molecular sieves (SAPO-34)
 - Major olefin products are Ethylene and Propylene
 - Fast deactivation by aromatic coke
 - SAPO molecular sieves more stable than corresponding zeolite structure

Shape Selectivity

Courtesy: Simon R. Bare

Methanol to Hydrocarbon Catalysis, J. F.Haw, et al., Acc. Chem. Res. 2003, 36, 317

0 0

Structural Comparison

Courtesy: Simon R. Bare

20

000

Small, Medium and Large Pore

 Small, medium and large pore SAPO's show MTO activity – but distinct selectivity differences.

Soc, WHSV = 0.3 h^{-1} , Courtesy: Simon R. BareMeOH = 0.02 bar, N₂ = 0.98 bar

S.M. Yang et al, Stud. Surf. Sci. Catal., 61, 429 (1991)

Alumino-Phosphate (AIPO₄) Molecular Sieves

- Microporous solids similar to silico-aluminate zeolites – but composed of interlinked tetrahedra of AlO₄ and PO₄ vs. AlO₄ and SiO₄.
- Alternating AI-O-P bonds
- Almost never AI-O-AI, and never P-O-P (due to charge and lack of hydrothermal stability).

Courtesy: Simon R. Bare

Idealized 2D-Connectivity of Tetrahedral AIPO₄ Framework

• Al and P strictly alternating.

Neutral framework.

Courtesy: Simon R. Bare

Si Substitution for P in AIPO₄ to give SAPO

• Si substitution for P in AIPO₄ yields negative framework charge and Brønsted acid sites.

24

Si Substitution Produces Brønsted Acid Sites

Courtesy: Simon R. Bare

Desired structure and Templates SYNTHESIS OF SAPO-34

26 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

SAPO-34 (CHA) Structure

- Three-dimensional pore system consisting of large cavities (about 9.4Å in diameter) separated by small windows (3.8 x 3.8Å)
- Periodic building unit is the double 6-ring layer connected through 4-rings.

Courtesy: Simon R. Bare

27

CHA Framework: Structural Characteristics

• The CHA cage.

4-rings inaccessible to most molecules (door closed)

Cage bounded by 36 TO₂ Dimensions: 7.5 x 8.2Å Pore opening: 4.4 x 3.6A Every TO₂ shared by 3 cages

Courtesy: Simon R. Bare

SAPO-34 vs. SSZ-13

- SSZ-13 has same structure (CHA) as SAPO-34 but is an aluminosilicate zeolite.
- Selectivity to olefins substantially less in SSZ-13.

Material	SAPO-34	SSZ-13	SSZ-13	SSZ-13
		(Chabazite)	(Chabazite)	(Chabazite)
T atom %	10% Si (gel)	18% Al	10% Al	3.3% Al
Selectivities (2 hr)				
C ₂ -C ₄ olefins	96	69	75	87
CH ₄	1.4	3.9		
C_2H_6	0.3	5.4		
C_3H_8	0.9	18.9		
Stability				
hr at >50%	>40	6	13	7
conversion				
Coking				
carbon on	19% after	16.6% after	19.3% after	15.0% after
used catalyst	54 HOS	18 HOS	18 HOS	18 HOS

Courtesy: Simon R. Bare

Yuen, et al., Microporous Materials, 2 (1994) 105

Synthesis of SAPO-34: Templates

- >30 templates make SAPO CHA framework type.
- Most not well studied

Studt / Boubnov – Methanol synthesis and MTO

Characterization of Zeolites

Acidic sites

- NH₃-TPD
- Pyridine-FTIR
- Low-temperature CO-FTIR
- Framework
 - Hydroxyl-FTIR
 - Solid-State NMR
- Meso- / micro-structure
 - SEM
 - TEM

Acidic Sites: Use of Base for Characterization

- Acidic catalyst surface may expose both protic (Brønsted) and aprotic (Lewis) sites.
- Protic sites in a zeolite are surface hydroxyl groups OH.
- Aprotic sites in zeolite are typically extraframework Al surface cations.
- Basic probe molecule will interact with OH via hydrogen bonding:

$OH_s + B \Leftrightarrow OH_s - B$

• If OH is sufficiently acidic then proton transfer:

$OH_s \cdots B \Leftrightarrow O_s ^{-} \cdots H^+B$

 For aprotic sites the base will form a Lewis acidbase adduct:

$\mathsf{L} + \mathsf{B} \Leftrightarrow \mathsf{L} \leftarrow \mathsf{B}$

Courtesy: Simon R. Bare

Ammonia Temperature-Programmed Desorption (NH₃-TPD)

- NH₃ TPD is used to measure the amount and relative strength of the acid sites.
- NH₃ small molecule but not very specific.

Ammonia Temperature-Programmed Desorption (NH₃-TPD)

Linear temperature ramp. Amount of ammonia desorbed as a function of temperature recorded and quantified.

Pyridine-FTIR

- Pyridine is a weak base which coordinates with both Brønsted and Lewis acid sites.
- Distinct FTIR-active bands are observed for each type of acid site.
- The integrated intensity provides a relative measure of the number of each site.
- The desorption temperature provides a relative measure of the acid site strength.
- Most useful when comparing a series of samples.

Courtesy: Simon R. Bare

35

Pyridine-FTIR

36 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Pyridine-FTIR: Acidic Site Distribution

Reaction, Deactivation, Regeneration **MECHANISM OF MTO**

38 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Mechanism of MTO

 More than 20 proposed mechanisms during the past 30 years (Involving intermediates such as radicals, carbenes, oxonium ions, carbocations)

- How can two or more C₁-entities react so that C-C bonds are formed?
- No simple β-hydride elimination so no straightforward mechanism to olefins from methanol.
- Don't have time to go into great detail on some of the elegant mechanistic work performed.

Courtesy: Simon R. Bare

Hydrocarbon Pool (HCP) Mechanism

- What is the identity of the hydrocarbon pool?
- How does it operate?

I.M. Dahl and S. Kolboe, J. Catal. 149 (1994) 329,

I.M. Dahl and S. Kolboe, J. Catal. 161 (1996) 304.

Courtesy: Simon R. Bare

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 - 5831

Plessow & Studt, Catal. Sci. Technol. 2018, 8, 4420.

Institute of Catalysis Research and Technology (IKFT) Institute for Chemical Technology and Polymer Chemistry (ITCP)

000

HCP: Initial Formation of HMB and heptaMP⁺

Hexamethylbenzene: Six labelled atoms Heptamethylbenzenium: Seven labelled atoms

Hexamethylbenzene in zeolite pore can take up another CH₃ to form heptamethylbenzenium ion

Courtesy: Simon R. Bare

M. Bjørgen, U. Olsbye, D. Petersen and S. Kolboe, J. Catal. (2004), 221, 1-10.

HCP: Paring and Exocyclic (Side-Chain) routes

000

Figure 10. Representation of the paring and side-chain reaction concepts in MTH catalysis. From Ref. [120].

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 - 5831

Studt / Boubnov – Methanol synthesis and MTO

HCP Paring Route

Courtesy: Simon R. Bare

HCP Exocyclic Route

- Exocyclic double bond reacts with
- incoming CH₃OH resulting in ethyl group on benzene ring
- Subsequent dealkylation to ethylene
- Essential intermediate in cycle is formation of two gem-methyl groups attached to benzene ring.

M. Bjørgen, U. Olsbye, D. Petersen and S. Kolboe, J. Catal. (2004), 221, 1-10.

Courtesy: Simon R. Bare

Institute of Catalysis Research and Technology (IKFT) Institute for Chemical Technology and Polymer Chemistry (ITCP)

H-Zeolite

MTO Site: Organic-Inorganic Hybrid

00

Courtesy: Unni Olsbye, Simon R. Bare

46 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

SAPO-34 active catalyst

- SAPO-34 (CHA) has large cages connected with small windows.
- Large aromatics are accumulated in these cages during the reaction.
- An array of nanoreactors!

Courtesy: Unni Olsbye, Simon R. Bare (001) projection

Proof of HCP: Intermediates on BEA zeolite

- The beta zeolite is a wide pore zeolite allowing direct introduction of rather large molecules.
- It is not interesting as a commercial catalyst for MTO/MTH chemistry.

Model: Beta, BEA-topology Cages = Windows

12-ring window, substituted aromatic hydrocarbons can enter.

7.7 x 6.6 Å

Courtesy: Simon R. Bare

Proof of HCP: Intermediates on BEA zeolite

Hexamethylbenzene is a dominant gas phase product

Bjørgen, M. and Kolboe, S. *Appl. Catal. A* 2002, 225, 285-290. Courtesy: Unni Olsbye, Simon R. Bare

49 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Proof of HCP: direct analysis of trapped intermediates

The olefin production goes on for several minutes after the methanol feeding has been terminated

What is the active pool contained inside the zeolite?

Courtesy: Unni Olsbye, Simon R. Bare

50 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Proof of HCP: Hydrocarbons retained in Zeolite Pores

✓ Analyzed *ex-situ* by:

Quenching the reaction (after a set time, few mins)

✓ Dissolving the zeolite (15% HF)

 Extracting the organic material from the water phase

 Trapped organic species are liberated and can be analyzed

Courtesy: Unni Olsbye, Simon R. Bare

Trapped Hydrocarbons

Methanol reacted over the H-beta zeolite (GC-MS)

Almost exclusively polymethylbenzenes

Courtesy: Unni Olsbye, Simon R. Bare

52 30 June 2020

Studt / Boubnov – Methanol synthesis and MTO

Trapped intermediates in SAPO-34 are same as Products in H-BEA

- The same gas phase products as observed when methanol was reacted
- The retained compounds were the same as those obtained from methanol

Bjørgen, M.; Olsbye, U.; Kolboe, S. J. Catal. 2003, 215, 30-44.

Courtesy: Unni Olsbye, Simon R. Bare

53 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Deactivation in Fixed-Bed Reactor

 SAPO-34 catalyst highly active with good selectivity then conversion drops rapidly.

Courtesy: Simon R. Bare

54

Time

30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Molecular View on Initial Deactivation

- Hexamethylbenzene in CHA cage
- With increasing TOS some methylbenzenes age into methylnaphthalenes.
- Further aging to phenanthrene causes loss of activity
- Largest ring system to form in SAPO-34 is pyrene.

Haw, Accts. Chem. Res. 36 (2003) 317

Courtesy: Simon R. Bare

MTO Reactor Design

Fixed Bed Reactor

- rapid deactivation due to coke formation
- reactor would have to swing between process & regeneration
- product composition varies with time
- expensive high-temperature valves required

Fluidized-Bed Reactor

- transport reactor, internal catalyst circulation
- continuous movement of portion of used catalyst to separate regenerator
- reduced catalyst inventory, increased capacity
- uniform product distribution with time

Courtesy: Simon R. Bare

Fluidized-Bed Reactor

000

Courtesy: Simon R. Bare

Fluidized-Bed Reactor Results

Conversion and selectivity remain high over months of operation.

Time on-stream, days

Courtesy: Simon R. Bare

Combined with Olefin Cracking

Reactor Regenerator

Courtesy: Simon R. Bare

Olefin Cracking Integration with MTO

• Upgrade C4+ MTO product to C2= and C3=.

- 20% increase in light olefin yields
- Nearly 80% reduction in C₄+ by-products
- Can achieve 2:1 propylene/ethylene product ratio

Courtesy: Simon R. Bare

Olefin Cracking Integration with MTO

Courtesy: Simon R. Bare

61 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

MTO Summary

- Olefins needs for catalysts: high selectivity and catalyst stability
 - Zeolite molecular sieve control of entering and exiting molecules)
 - 8-member rings
 - Light olefins C₂H₄ and C₃H₆
 - Higher olefins (C₄₊) and aromatics
 - Acidity moderate
- Best catalyst SAPO-34

ACTIVE SITE

- Deactivation by polyaromats \rightarrow Combustion to regenerate
- Combination with higher HC cracking

Literature with primary references

PROGRESS REPORT

MTO Catalysts

Recent Progress in Methanol-to-Olefins (MTO) Catalysts

Miao Yang, Dong Fan, Yingxu Wei, Peng Tian,* and Zhongmin Liu*

Dedicated to Dalian Institute of Chemical Physics, Chinese Academy of Sciences on its 70th anniversary

Methanol conversion to olefins, as an important reaction in C1 chemistry, provides an alternative platform for producing basic chemicals from nonpetroleum resources such as natural gas and coal. Methanol-to-olefin Among the 8-MR molecular sieves, silicoaluminophosphate SAPO-34 with 3D channels and moderate acid strength represents the most interesting one, the light olefins

Adv. Mater. 31 (2019) 1902181, DOI: 10.1002/adma.201902181

Literature: The Methanol Economy

George A. Olah 1927-2017 Nobel Prize in Chemistry 1994

WILEY-VCH

George A. Olah, Alain Goeppert, and G.K. Surya Prakash

Beyond Oil and Gas: The Methanol Economy

Third, Updated and Enlarged Edition

Angew. Chem. Int. Ed. 2005, 44, 2636 – 2639

Essays

Alternative Energy Sources

Beyond Oil and Gas: The Methanol Economy**

George A. Olah*

Keywords: environmental chemistry · hydrocarbons hydrogen · methanol

> Oil and natural gas together with coal, purposes began slowly and became the main fossil fuels, not only remain our more widespread in the 16th and 17th major energy sources but they are also centuries mainly in England as a replacement for wood, which was becomthe feedstocks for a great variety of manmade materials and products that ing scarcer. Coal became dominant in range from gasoline and diesel oil to the 18th century with the invention of varied petrochemical and chemical the steam engine and the industrial products, including synthetic materials, revolution, which was also fueled by plastics, and pharmaceuticals. What na- coal, that followed. In the 19th and 20th ture gave us as a gift, formed over the centuries, coal continued to satisfy the province Alberta. The relatively stable

significant, but will not fundamentally change the long-range outlook.

Besides petroleum oil and natural gas (and also coal), we have additional sources of "heavy" hydrocarbons, such as heavy-oil deposits in Venezuela, oil shales in various geological formations including the US Rocky Mountains, and vast tar sand deposits in the Canadian

EXTRA SLIDES

66 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Mechanism

000

Proposed dual cycle mechanism

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 - 5831

Mechanism Formation of aromatics

Müller et al, JACS 2016, 138, 15994.

68 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

DeLuca et al, https://doi.org/10.26434/chemrxiv.8016017.v1

Methylation results in heavily methylated aromats

Mechanism

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 – 5831

70 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Plessow et al. *JACS* **2019**, *141*, 5908

Deactivation

Rapid deactivation after hours of operation

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 - 5831

Deactivation

Royo-Gama et al. J. Phys. Chem. Lett. 2018, 9, 1324.
Deactivation

Fig. 24 James Haw's pictorial representation of a deactivating MTH catalyst (SAPO-34) as a burning cigar. Adapted from ref. 144.

Olsybe et al. Angew. Chem. Int. Ed. 2012, 51, 5810 - 5831

Haw & Marcus, Top. Catal. 2005, 34, 41.

Institute of Catalysis Research and Technology (IKFT) Institute for Chemical Technology and Polymer Chemistry (ITCP)

Deactivation

(1) MeOh $\xrightarrow{\text{Alkene}^*}$ Alkene k_1

- (2) MeOH $\xrightarrow{\text{Aromatics}^*}$ Alkene k_2
- (3) Alkene^{*} \rightarrow Aromatics^{*} + Alkanes k_3
- (4) Aromatics^{*} + MeOH \rightarrow Coke^{*} k_4

Royo-Gama et al. J. Phys. Chem. Lett. 2018, 9, 1324.

74 30 June 2020 Studt / Boubnov – Methanol synthesis and MTO

Haw & Marcus, Top. Catal. 2005, 34, 41.

Institute of Catalysis Research and Technology (IKFT) Institute for Chemical Technology and Polymer Chemistry (ITCP)